Discrete and mesoscopic regimes of finite-size wave turbulence

被引:39
|
作者
L'vov, V. S. [1 ]
Nazarenko, S. [2 ]
机构
[1] Weizmann Inst Sci, Dept Chem Phys, IL-76100 Rehovot, Israel
[2] Univ Warwick, Math Inst, Coventry CV4 7AL, W Midlands, England
来源
PHYSICAL REVIEW E | 2010年 / 82卷 / 05期
基金
美国国家科学基金会;
关键词
SURFACE; PROBABILITY; TRANSITION; AMPLITUDES; SPECTRUM; GRAVITY;
D O I
10.1103/PhysRevE.82.056322
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Bounding volume results in discreteness of eigenmodes in wave systems. This leads to a depletion or complete loss of wave resonances (three-wave, four-wave, etc.), which has a strong effect on wave turbulence (WT) i.e., on the statistical behavior of broadband sets of weakly nonlinear waves. This paper describes three different regimes of WT realizable for different levels of the wave excitations: discrete, mesoscopic and kinetic WT. Discrete WT comprises chaotic dynamics of interacting wave "clusters" consisting of discrete (often finite) number of connected resonant wave triads (or quarters). Kinetic WT refers to the infinite-box theory, described by well-known wave-kinetic equations. Mesoscopic WT is a regime in which either the discrete and the kinetic evolutions alternate or when none of these two types is purely realized. We argue that in mesoscopic systems the wave spectrum experiences a sandpile behavior. Importantly, the mesoscopic regime is realized for a broad range of wave amplitudes which typically spans over several orders on magnitude, and not just for a particular intermediate level.
引用
收藏
页数:11
相关论文
共 50 条
  • [11] Avalanches, precursors, and finite-size fluctuations in a mesoscopic model of amorphous plasticity
    Talamali, Mehdi
    Petaejae, Viljo
    Vandembroucq, Damien
    Roux, Stephane
    PHYSICAL REVIEW E, 2011, 84 (01):
  • [12] FINITE-SIZE EFFECTS IN FORCED 2-DIMENSIONAL TURBULENCE
    SMITH, LM
    YAKHOT, V
    JOURNAL OF FLUID MECHANICS, 1994, 274 : 115 - 138
  • [13] Dispersion of finite-size particles probing inhomogeneous and anisotropic turbulence
    Meriaux, Catherine A.
    Teixeira, Miguel A. C.
    Monaghan, Joe J.
    Cohen, Raymond
    Cleary, Paul
    EUROPEAN JOURNAL OF MECHANICS B-FLUIDS, 2020, 84 : 93 - 109
  • [14] Turbulence modulation in channel flow of finite-size spheroidal particles
    Ardekani, M. Niazi
    Brandt, L.
    JOURNAL OF FLUID MECHANICS, 2019, 859 : 887 - 901
  • [15] Modulation of homogeneous shear turbulence laden with finite-size particles
    Tanaka, M.
    Teramoto, D.
    JOURNAL OF TURBULENCE, 2015, 16 (10): : 979 - 1010
  • [16] Settling of finite-size particles in turbulence at different volume fractions
    Walter Fornari
    Sagar Zade
    Luca Brandt
    Francesco Picano
    Acta Mechanica, 2019, 230 : 413 - 430
  • [17] Settling of finite-size particles in turbulence at different volume fractions
    Fornari, Walter
    Zade, Sagar
    Brandt, Luca
    Picano, Francesco
    ACTA MECHANICA, 2019, 230 (02) : 413 - 430
  • [18] Mesoscopic wave turbulence
    V. E. Zakharov
    A. O. Korotkevich
    A. N. Pushkarev
    A. I. Dyachenko
    Journal of Experimental and Theoretical Physics Letters, 2005, 82 : 487 - 491
  • [19] Mesoscopic wave turbulence
    Zakharov, VE
    Korotkevich, AO
    Pushkarev, AN
    Dyachenko, AI
    JETP LETTERS, 2005, 82 (08) : 487 - 491
  • [20] Parameterization of turbulence modulation by finite-size solid particles in forced homogeneous isotropic turbulence
    Peng, Cheng
    Sun, Qichao
    Wang, Lian-Ping
    JOURNAL OF FLUID MECHANICS, 2023, 963