Discrete and mesoscopic regimes of finite-size wave turbulence

被引:39
|
作者
L'vov, V. S. [1 ]
Nazarenko, S. [2 ]
机构
[1] Weizmann Inst Sci, Dept Chem Phys, IL-76100 Rehovot, Israel
[2] Univ Warwick, Math Inst, Coventry CV4 7AL, W Midlands, England
来源
PHYSICAL REVIEW E | 2010年 / 82卷 / 05期
基金
美国国家科学基金会;
关键词
SURFACE; PROBABILITY; TRANSITION; AMPLITUDES; SPECTRUM; GRAVITY;
D O I
10.1103/PhysRevE.82.056322
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Bounding volume results in discreteness of eigenmodes in wave systems. This leads to a depletion or complete loss of wave resonances (three-wave, four-wave, etc.), which has a strong effect on wave turbulence (WT) i.e., on the statistical behavior of broadband sets of weakly nonlinear waves. This paper describes three different regimes of WT realizable for different levels of the wave excitations: discrete, mesoscopic and kinetic WT. Discrete WT comprises chaotic dynamics of interacting wave "clusters" consisting of discrete (often finite) number of connected resonant wave triads (or quarters). Kinetic WT refers to the infinite-box theory, described by well-known wave-kinetic equations. Mesoscopic WT is a regime in which either the discrete and the kinetic evolutions alternate or when none of these two types is purely realized. We argue that in mesoscopic systems the wave spectrum experiences a sandpile behavior. Importantly, the mesoscopic regime is realized for a broad range of wave amplitudes which typically spans over several orders on magnitude, and not just for a particular intermediate level.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Quantum interference in finite-size mesoscopic rings
    Papari, G. P.
    Fomin, V. M.
    PHYSICAL REVIEW B, 2022, 105 (14)
  • [2] Clustering of finite-size particles in turbulence
    Fiabane, L.
    Zimmermann, R.
    Volk, R.
    Pinton, J. -F.
    Bourgoin, M.
    PHYSICAL REVIEW E, 2012, 86 (03):
  • [3] Finite-size effects in the magnetization of periodic mesoscopic systems
    Erlingsson, SI
    Manolescu, A
    Gudmundsson, V
    PHYSICA E, 2000, 6 (1-4): : 763 - 766
  • [4] Transition to quantum turbulence in finite-size superfluids
    Shiozaki, R. F.
    Telles, G. D.
    Yukalov, V. I.
    Bagnato, V. S.
    LASER PHYSICS LETTERS, 2011, 8 (05) : 393 - 397
  • [5] Finite-size inertial spherical particles in turbulence
    Chiarini, Alessandro
    Rosti, Marco Edoardo
    JOURNAL OF FLUID MECHANICS, 2024, 988
  • [6] Regimes of heat transfer in finite-size particle suspensions
    Yousefi, Ali
    Ardekani, Mehdi Niazi
    Picano, Francesco
    Brandt, Luca
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2021, 177
  • [7] Droplet evaporation in finite-size systems: Theoretical analysis and mesoscopic modeling
    Fei, Linlin
    Qin, Feifei
    Wang, Geng
    Luo, Kai H.
    Derome, Dominique
    Carmeliet, Jan
    PHYSICAL REVIEW E, 2022, 105 (02)
  • [8] Finite-Size Scaling for the Permeability of Discrete Fracture Networks
    Yin, Tingchang
    Man, Teng
    Li, Ling
    Galindo-Torres, Sergio Andres
    GEOPHYSICAL RESEARCH LETTERS, 2023, 50 (06)
  • [9] Vortex configurations in mesoscopic superconducting triangles: Finite-size and shape effects
    Zhao, H. J.
    Misko, V. R.
    Peeters, F. M.
    Dubonos, S.
    Oboznov, V.
    Grigorieva, I. V.
    EPL, 2008, 83 (01)
  • [10] Modeling of fractured material by finite-size discrete particles
    A. I. Gulidov
    I. I. Shabalin
    Journal of Applied Mechanics and Technical Physics, 1997, 38 (3) : 341 - 345