Genetic risk score for risk prediction of diabetic nephropathy in Han Chinese type 2 diabetes patients

被引:15
作者
Liao, Li-Na [1 ]
Li, Tsai-Chung [1 ,2 ]
Li, Chia-Ing [3 ,4 ]
Liu, Chiu-Shong [3 ,4 ,5 ]
Lin, Wen-Yuan [3 ,5 ]
Lin, Chih-Hsueh [3 ,5 ]
Yang, Chuan-Wei [4 ]
Chen, Ching-Chu [6 ,7 ]
Chang, Chiz-Tzung [3 ,8 ,9 ]
Yang, Ya-Fei [3 ,8 ,9 ]
Liu, Yao-Lung [3 ,8 ,9 ]
Kuo, Huey-Liang [3 ,8 ,9 ,10 ]
Tsai, Fuu-Jen [7 ,11 ]
Lin, Cheng-Chieh [3 ,4 ,5 ]
机构
[1] China Med Univ, Coll Publ Hlth, Dept Publ Hlth, Taichung, Taiwan
[2] Asia Univ, Coll Med & Hlth Sci, Dept Healthcare Adm, Taichung, Taiwan
[3] China Med Univ, Coll Med, Sch Med, Taichung, Taiwan
[4] China Med Univ Hosp, Dept Med Res, Taichung, Taiwan
[5] China Med Univ Hosp, Dept Family Med, Taichung, Taiwan
[6] China Med Univ Hosp, Dept Med, Div Endocrinol & Metab, Taichung, Taiwan
[7] China Med Univ, Coll Chinese Med, Sch Chinese Med, Taichung, Taiwan
[8] China Med Univ Hosp, Kidney Inst, Taichung, Taiwan
[9] China Med Univ Hosp, Div Nephrol, Dept Internal Med, Taichung, Taiwan
[10] China Med Univ, Coll Med, Grad Inst Clin Med Sci, Taichung, Taiwan
[11] China Med Univ Hosp, Dept Med Res, Human Genet Lab, Taichung, Taiwan
关键词
CHRONIC KIDNEY-DISEASE; MODEL; CKD; PROGRESSION; POPULATION; VALIDATION; MORTALITY;
D O I
10.1038/s41598-019-56400-3
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We evaluated whether genetic information could offer improvement on risk prediction of diabetic nephropathy (DN) while adding susceptibility variants into a risk prediction model with conventional risk factors in Han Chinese type 2 diabetes patients. A total of 995 (including 246 DN cases) and 519 (including 179 DN cases) type 2 diabetes patients were included in derivation and validation sets, respectively. A genetic risk score (GRS) was constructed with DN susceptibility variants based on findings of our previous genome-wide association study. In derivation set, areas under the receiver operating characteristics (AUROC) curve (95% CI) for model with clinical risk factors only, model with GRS only, and model with clinical risk factors and GRS were 0.75 (0.72-0.78), 0.64 (0.60-0.68), and 0.78 (0.75-0.81), respectively. In external validation sample, AUROC for model combining conventional risk factors and GRS was 0.70 (0.65-0.74). Additionally, the net reclassification improvement was 9.98% (P = 0.001) when the GRS was added to the prediction model of a set of clinical risk factors. This prediction model enabled us to confirm the importance of GRS combined with clinical factors in predicting the risk of DN and enhanced identification of high-risk individuals for appropriate management of DN for intervention.
引用
收藏
页数:9
相关论文
共 40 条
[31]   Evaluating the added predictive ability of a new marker: From area under the ROC curve to reclassification and beyond [J].
Pencina, Michael J. ;
D'Agostino, Ralph B., Sr. ;
D'Agostino, Ralph B., Jr. ;
Vasan, Ramachandran S. .
STATISTICS IN MEDICINE, 2008, 27 (02) :157-172
[32]   US Renal Data System 2017 Annual Data Report Epidemiology of Kidney Disease in the United States [J].
Saran, Rajiv ;
Robinson, Bruce ;
Abbott, Kevin C. ;
Agodoa, Lawrence Y. C. ;
Bragg-Gresham, Jennifer ;
Balkrishnan, Rajesh ;
Dietrich, Xue ;
Eckard, Ashley ;
Eggers, Paul W. ;
Gaipov, Abduzhappar ;
Gillen, Daniel ;
Gipson, Debbie ;
Hailpern, Susan M. ;
Hall, Yoshio N. ;
Han, Yun ;
He, Kevin ;
Herman, William ;
Heung, Michael ;
Hirth, Richard A. ;
Hutton, David ;
Jacobsen, Steven J. ;
Jin, Yan ;
Kalantar-Zadeh, Kamyar ;
Kapke, Alissa ;
Kovesdy, Csaba P. ;
Lavallee, Danielle ;
Leslie, Janet ;
McCullough, Keith ;
Modi, Zubin ;
Molnar, Miklos Z. ;
Montez-Rath, Maria ;
Moradi, Hamid ;
Morgenstern, Hal ;
Mukhopadhyay, Purna ;
Nallamothu, Brahmajee ;
Nguyen, Danh V. ;
Norris, Keith C. ;
O'Hare, Ann M. ;
Obi, Yoshitsugu ;
Park, Christina ;
Pearson, Jeffrey ;
Pisoni, Ronald ;
Potukuchi, Praveen K. ;
Rao, Panduranga ;
Repeck, Kaitlyn ;
Rhee, Connie M. ;
Schrager, Jillian ;
Schaubel, Douglas E. ;
Selewski, David T. ;
Shaw, Sally F. .
AMERICAN JOURNAL OF KIDNEY DISEASES, 2018, 71 (03) :S1-S676
[33]  
Shlipak M., 2010, BMJ CLIN EVIDENCE, V2010
[34]  
Smith Jennifer A, 2015, Curr Epidemiol Rep, V2, P180
[35]  
Steyerberg E.W., 2009, Clinical Prediction Models: A Practical Approach to Development, Validation, and Updating, V2nd ed., DOI 10.1007/978-0-387-77244-8
[36]   A simplified clinical prediction score of chronic kidney disease: A cross-sectional-survey study [J].
Thakkinstian, Ammarin ;
Ingsathit, Atiporn ;
Chaiprasert, Amnart ;
Rattanasiri, Sasivimol ;
Sangthawan, Pornpen ;
Gojaseni, Pongsathorn ;
Kiattisunthorn, Kriwiporn ;
Ongaiyooth, Leena ;
Thirakhupt, Prapaipim .
BMC NEPHROLOGY, 2011, 12
[37]   Genetic Profiling and Individualized Prognosis of Fracture [J].
Tran, Bich N. H. ;
Nguyen, Nguyen D. ;
Nguyen, Vinh X. ;
Center, Jacqueline R. ;
Eisman, John A. ;
Nguyen, Tuan V. .
JOURNAL OF BONE AND MINERAL RESEARCH, 2011, 26 (02) :414-419
[38]   Validity of a Risk Prediction Equation for CKD After 10 Years of Follow-up in a Japanese Population: The Ibaraki Prefectural Health Study [J].
Umesawa, Mitsumasa ;
Sairenchi, Toshimi ;
Haruyama, Yasuo ;
Nagao, Masanori ;
Yamagishi, Kazumasa ;
Irie, Fujiko ;
Watanabe, Hiroshi ;
Kobashi, Gen ;
Iso, Hiroyasu ;
Ota, Hitoshi .
AMERICAN JOURNAL OF KIDNEY DISEASES, 2018, 71 (06) :842-850
[39]   Prediction of new onset of end stage renal disease in Chinese patients with type 2 diabetes mellitus - a population-based retrospective cohort study [J].
Wan, Eric Yuk Fai ;
Fong, Daniel Yee Tak ;
Fung, Colman Siu Cheung ;
Yu, Esther Yee Tak ;
Chin, Weng Yee ;
Chan, Anca Ka Chun ;
Lam, Cindy Lo Kuen .
BMC NEPHROLOGY, 2017, 18
[40]   Leptin and renal disease [J].
Wolf, G ;
Chen, S ;
Han, DC ;
Ziyadeh, FN .
AMERICAN JOURNAL OF KIDNEY DISEASES, 2002, 39 (01) :1-11