Some properties of the Bezier-Kantorovich type operators

被引:21
作者
Pych-Taberska, P [1 ]
机构
[1] Adam Mickiewicz Univ Poznan, Fac Math & Comp Sci, PL-61614 Poznan, Poland
关键词
discrete Feller operator; Kantorovich and Bezier type operator; rate of pointwise convergence; modulus of variation; pth power variation;
D O I
10.1016/S0021-9045(03)00106-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The aim of this paper is to present estimates for the rate of pointwise convergence of the Bezier-Kantorovich modification of the discrete Feller operators in some classes of measurable functions bounded on an interval I, in particular, for functions of bounded pth power variation on I. Our theorems generalize and extend the recent results of Zeng and Piriou (J. Approx. Theory 95(1998) 369; 104(2000) 330) for the kantorovichians of the Bernstein-Bezier operators in the class of functions of bounded variation in the Jordan sense on [0, 1]. (C) 2003 Elsevier Inc. All rights reserved.
引用
收藏
页码:256 / 269
页数:14
相关论文
共 9 条
[1]  
CHANTURIYA ZA, 1974, DOKL AKAD NAUK SSSR+, V214, P63
[2]  
Feller W., 1966, INTRO PROBABILITY TH, V2
[3]   ON THE RATE OF CONVERGENCE OF SOME OPERATORS ON FUNCTIONS OF BOUNDED VARIATION [J].
GUO, SS ;
KHAN, MK .
JOURNAL OF APPROXIMATION THEORY, 1989, 58 (01) :90-101
[4]  
Heilmann M., 1989, APPROX THEORY APPL, V5, P105, DOI 10.1007/BF02836120
[5]  
Lagrange MR, 1965, ANN SCI ECOLE NORM S, V3, P101
[6]  
PYCHTABERSKA P, 1991, ANN SOC MATH POLON 1, V31, P147
[7]  
PYCHTABERSKA P, 2000, FUNCT APPROX COMMENT, V28, P201
[8]   On the rate of convergence of two Bernstein-Bezier type operators for bounded variation functions, II [J].
Zeng, XM .
JOURNAL OF APPROXIMATION THEORY, 2000, 104 (02) :330-344
[9]   On the rate of convergence of two Bernstein-Bezier type operators for bounded variation functions [J].
Zeng, XM ;
Piriou, A .
JOURNAL OF APPROXIMATION THEORY, 1998, 95 (03) :369-387