Integrated p-n/Schottky junctions for efficient photocatalytic hydrogen evolution upon Cu@TiO2-Cu2O ternary hybrids with steering charge transfer

被引:84
作者
Qiu, Pei [2 ]
Xiong, Jinyan [1 ]
Lu, Mengjie [1 ]
Liu, Lijun [1 ]
Li, Wei [1 ]
Wen, Zhipan [2 ]
Li, Weijie [3 ]
Chen, Rong [2 ]
Cheng, Gang [2 ]
机构
[1] Wuhan Text Univ, Coll Chem & Chem Engn, Hubei Key Lab Biomass Fibers & Ecodyeing & Finishi, Wuhan 430200, Peoples R China
[2] Wuhan Inst Technol, Sch Chem & Environm Engn, Donghu New & High Technol Dev Zone, Wuhan 430205, Peoples R China
[3] Univ Wollongong, Inst Superconducting & Elect Mat, Wollongong, NSW 2522, Australia
基金
中国国家自然科学基金;
关键词
P-n junction; Schottky junction; Photocatalytic hydrogen evolution; Charge separation and transfer; Photocatalysis; Copper species; N-JUNCTION; CARBON NITRIDE; TIO2; WATER; CO2; HETEROJUNCTIONS; GENERATION; ANATASE; NANOSTRUCTURES; NANOPARTICLES;
D O I
10.1016/j.jcis.2022.04.107
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Solar-driven photocatalytic H-2 evolution could tackle the issue of fossil fuels-triggered greenhouse gas emission with sustainable clean energy. However, splitting water into hydrogen with high performance by a single semiconductor is challenging because of the poor charge separation efficiency. Herein, a novel ternary Cu@TiO2-Cu2O hybrid photocatalyst with multiple charge transfer channels has been designed for efficient solar-to-hydrogen evolution. Indeed, the ternary Cu@TiO2-Cu2O hybrid by coupling Cu@TiO2 with Cu2O nanoparticles shows highly-efficient photocatalytic hydrogen generation with rate of 12000.6 lmol.g(-1).h(-1), which is 4.4, 2.1, and 1.9 times higher than the pure TiO2 (2728.8 lmol.g(-1).h(-1)), binary Cu@TiO2 (5595.5 lmol.g(-1).h(-1)), and TiO2-Cu2O (6076.8 lmol.g(-1).h(-1)) composite, respectively. In such a Cu@TiO2-Cu2O hybrid, the formed internal electric field in the TiO2-Cu2O p-n junction allows the electrons in Cu2O to migrate to TiO2, while the electrons in the CB of TiO2 could flow into Cu via the Schottky junction at the Cu@TiO2 interface. In this regard, a multiple charge transfer is achieved between the Cu@TiO2 and Cu2O, which facilitates promoted charge separation and results in the construction of electron-accumulated center (Cu) and hole-enriched surface (Cu2O). This p-n/Schottky junctions with steered charge transfer assists the hydrogen production upon the Cu@TiO2-Cu2O ternary photocatalyst. (C) 2022 Elsevier Inc. All rights reserved.
引用
收藏
页码:924 / 937
页数:14
相关论文
共 86 条
[1]   Cu2O/TiO2 heterostructures for CO2 reduction through a direct Z-scheme: Protecting Cu2O from photocorrosion [J].
Aguirre, Matias E. ;
Zhou, Ruixin ;
Eugene, Alexis J. ;
Guzman, Marcelo I. ;
Grela, Maria A. .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2017, 217 :485-493
[2]   Atomic-Level Charge Separation Strategies in Semiconductor-Based Photocatalysts [J].
Chen, Fang ;
Ma, Tianyi ;
Zhang, Tierui ;
Zhang, Yihe ;
Huang, Hongwei .
ADVANCED MATERIALS, 2021, 33 (10)
[3]   Facet-Specific Photocatalytic Activity Enhancement of Cu2O Polyhedra Functionalized with 4-Ethynylanaline Resulting from Band Structure Tuning [J].
Chen, Tzu-Ning ;
Kao, Jui-Cheng ;
Zhong, Xin-Yan ;
Chan, Shang-Ju ;
Patra, Anindya S. ;
Lo, Yu-Chieh ;
Huang, Michael H. .
ACS CENTRAL SCIENCE, 2020, 6 (06) :984-994
[4]   An Inorganic/Organic S-Scheme Heterojunction H2-Production Photocatalyst and its Charge Transfer Mechanism [J].
Cheng, Chang ;
He, Bowen ;
Fan, Jiajie ;
Cheng, Bei ;
Cao, Shaowen ;
Yu, Jiaguo .
ADVANCED MATERIALS, 2021, 33 (22)
[5]   S-scheme heterojunction based on p-type ZnMn2O4 and n-type ZnO with improved photocatalytic CO2 reduction activity [J].
Deng, Hongzhao ;
Fei, Xingang ;
Yang, Yi ;
Fan, Jiajie ;
Yu, Jiaguo ;
Cheng, Bei ;
Zhang, Liuyang .
CHEMICAL ENGINEERING JOURNAL, 2021, 409
[6]   A highly stable metal-organic framework derived phosphorus doped carbon/Cu2O structure for efficient photocatalytic phenol degradation and hydrogen production [J].
Dubale, Amare Aregahegn ;
Ahmed, Ibrahim Nasser ;
Chen, Xia-Hui ;
Ding, Cheng ;
Hou, Gui-Hua ;
Guan, Rong-Feng ;
Meng, Xiangming ;
Yang, Xiu-Li ;
Xie, Ming-Hua .
JOURNAL OF MATERIALS CHEMISTRY A, 2019, 7 (11) :6062-6079
[7]   ELECTROCHEMICAL PHOTOLYSIS OF WATER AT A SEMICONDUCTOR ELECTRODE [J].
FUJISHIMA, A ;
HONDA, K .
NATURE, 1972, 238 (5358) :37-+
[8]   Highly efficient S2-adsorbed MoSx-modified TiO2 photocatalysts: A general grafting strategy and boosted interfacial charge transfer [J].
Gao, Duoduo ;
Yuan, Ranran ;
Fan, Jiajie ;
Hong, Xuekun ;
Yu, Huogen .
JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2020, 56 (122-132) :122-132
[9]   Fluorescent TPA@GQDs Probe for Sensitive Assay and Quantitative Imaging of Hydroxyl Radicals in Living Cells [J].
Hai, Xin ;
Guo, Zhiyong ;
Lin, Xin ;
Chen, Xuwei ;
Wang, Jianhua .
ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (06) :5853-5861
[10]   Strong Metal-Support Interactions between Pt Single Atoms and TiO2 [J].
Han, Bing ;
Guo, Yalin ;
Huang, Yike ;
Xi, Wei ;
Xu, Jie ;
Luo, Jun ;
Qi, Haifeng ;
Ren, Yujing ;
Liu, Xiaoyan ;
Qiao, Botao ;
Zhang, Tao .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2020, 59 (29) :11824-11829