Cell type-specific inference of differential expression in spatial transcriptomics

被引:52
作者
Cable, Dylan M. [1 ,2 ,3 ]
Murray, Evan [2 ]
Shanmugam, Vignesh [2 ,4 ,5 ]
Zhang, Simon [2 ]
Zou, Luli S. [2 ,3 ,6 ]
Diao, Michael [1 ,2 ]
Chen, Haiqi [2 ,7 ,8 ]
Macosko, Evan Z. [2 ,9 ]
Irizarry, Rafael A. [3 ,6 ]
Chen, Fei [2 ,10 ]
机构
[1] MIT, Dept Elect Engn & Comp Sci, Cambridge, MA 02139 USA
[2] Broad Inst MIT & Harvard, Cambridge, MA 02142 USA
[3] Dana Farber Canc Inst, Dept Data Sci, Boston, MA 02115 USA
[4] Brigham & Womens Hosp, Dept Pathol, 75 Francis St, Boston, MA 02115 USA
[5] Harvard Med Sch, Boston, MA 02115 USA
[6] Harvard Univ, Dept Biostat, Boston, MA 02115 USA
[7] Univ Texas Southwestern Med Ctr Dallas, Cecil H & Ida Green Ctr Reprod Biol Sci, Dallas, TX USA
[8] Univ Texas Southwestern Med Ctr Dallas, Dept Obstet & Gynecol, Dallas, TX USA
[9] Massachusetts Gen Hosp, Dept Psychiat, Boston, MA 02114 USA
[10] Harvard Univ, Dept Stem Cell & Regenerat Biol, Cambridge, MA 02138 USA
基金
美国国家卫生研究院;
关键词
RNA; ORGANIZATION; GENES; MICE;
D O I
10.1038/s41592-022-01575-3
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
A central problem in spatial transcriptomics is detecting differentially expressed (DE) genes within cell types across tissue context. Challenges to learning DE include changing cell type composition across space and measurement pixels detecting transcripts from multiple cell types. Here, we introduce a statistical method, cell type-specific inference of differential expression (C-SIDE), that identifies cell type-specific DE in spatial transcriptomics, accounting for localization of other cell types. We model gene expression as an additive mixture across cell types of log-linear cell type-specific expression functions. C-SIDE's framework applies to many contexts: DE due to pathology, anatomical regions, cell-to-cell interactions and cellular microenvironment. Furthermore, C-SIDE enables statistical inference across multiple/replicates. Simulations and validation experiments on Slide-seq, MERFISH and Visium datasets demonstrate that C-SIDE accurately identifies DE with valid uncertainty quantification. Last, we apply C-SIDE to identify plaque-dependent immune activity in Alzheimer's disease and cellular interactions between tumor and immune cells. We distribute C-SIDE within the R package https://github.com/dmcable/spacexr.
引用
收藏
页码:1076 / +
页数:18
相关论文
共 69 条
[1]   A single-cell atlas of non-haematopoietic cells in human lymph nodes and lymphoma reveals a landscape of stromal remodelling [J].
Abe, Yoshiaki ;
Sakata-Yanagimoto, Mamiko ;
Fujisawa, Manabu ;
Miyoshi, Hiroaki ;
Suehara, Yasuhito ;
Hattori, Keiichiro ;
Kusakabe, Manabu ;
Sakamoto, Tatsuhiro ;
Nishikii, Hidekazu ;
Nguyen, Tran B. ;
Owada, Yohei ;
Enomoto, Tsuyoshi ;
Sawa, Aya ;
Bando, Hiroko ;
Yoshida, Chikashi ;
Tabata, Rikako ;
Terao, Toshiki ;
Nakayama, Masahiro ;
Ohshima, Koichi ;
Usuki, Kensuke ;
Oda, Tatsuya ;
Matsue, Kosei ;
Chiba, Shigeru .
NATURE CELL BIOLOGY, 2022, 24 (04) :565-+
[2]   Expansion sequencing: Spatially precise in situ transcriptomics in intact biological systems [J].
Alon, Shahar ;
Goodwin, Daniel R. ;
Sinha, Anubhav ;
Wassie, Asmamaw T. ;
Chen, Fei ;
Daugharthy, Evan R. ;
Bando, Yosuke ;
Kajita, Atsushi ;
Xue, Andrew G. ;
Marrett, Karl ;
Prior, Robert ;
Cui, Yi ;
Payne, Andrew C. ;
Yao, Chun-Chen ;
Suk, Ho-Jun ;
Wang, Ru ;
Yu, Chih-Chieh ;
Tillberg, Paul ;
Reginato, Paul ;
Pak, Nikita ;
Liu, Songlei ;
Punthambaker, Sukanya ;
Iyer, Eswar P. R. ;
Kohman, Richie E. ;
Miller, Jeremy A. ;
Lein, Ed S. ;
Lako, Ana ;
Cullen, Nicole ;
Rodig, Scott ;
Helvie, Karla ;
Abravanel, Daniel L. ;
Wagle, Nikhil ;
Johnson, Bruce E. ;
Klughammer, Johanna ;
Slyper, Michal ;
Waldman, Julia ;
Jane-Valbuena, Judit ;
Rozenblatt-Rosen, Orit ;
Regev, Aviv ;
Church, George M. ;
Marblestone, Adam H. ;
Boyden, Edward S. .
SCIENCE, 2021, 371 (6528) :481-+
[3]   Single-cell and spatial transcriptomics enables probabilistic inference of cell type topography [J].
Andersson, Alma ;
Bergenstrahle, Joseph ;
Asp, Michaela ;
Bergenstrahle, Ludvig ;
Jurek, Aleksandra ;
Fernandez Navarro, Jose ;
Lundeberg, Joakim .
COMMUNICATIONS BIOLOGY, 2020, 3 (01)
[4]  
[Anonymous], 2020, V1 HUMAN LYMPH NODE
[5]  
[Anonymous], 2020, 10X GENOMICS VISIUM
[6]   CONTROLLING THE FALSE DISCOVERY RATE - A PRACTICAL AND POWERFUL APPROACH TO MULTIPLE TESTING [J].
BENJAMINI, Y ;
HOCHBERG, Y .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 1995, 57 (01) :289-300
[7]   Seamless integration of image and molecular analysis for spatial transcriptomics workflows [J].
Bergenstrahle, Joseph ;
Larsson, Ludvig ;
Lundeberg, Joakim .
BMC GENOMICS, 2020, 21 (01)
[8]   Putative roles of cathepsin B in Alzheimer's disease pathology: the good, the bad, and the ugly in one? [J].
Bernstein, Hans-Gert ;
Keilhoff, Gerburg .
NEURAL REGENERATION RESEARCH, 2018, 13 (12) :2100-2101
[9]   Integrating single-cell transcriptomic data across different conditions, technologies, and species [J].
Butler, Andrew ;
Hoffman, Paul ;
Smibert, Peter ;
Papalexi, Efthymia ;
Satija, Rahul .
NATURE BIOTECHNOLOGY, 2018, 36 (05) :411-+
[10]   Robust decomposition of cell type mixtures in spatial transcriptomics [J].
Cable, Dylan M. ;
Murray, Evan ;
Zou, Luli S. ;
Goeva, Aleksandrina ;
Macosko, Evan Z. ;
Chen, Fei ;
Irizarry, Rafael A. .
NATURE BIOTECHNOLOGY, 2022, 40 (04) :517-+