Sobolev-Type Fractional Stochastic Integrodifferential Equations with Nonlocal Conditions in Hilbert Space

被引:22
作者
Ahmed, Hamdy M. [1 ]
机构
[1] El Shorouk Acad, Higher Inst Engn, PO 3, Cairo, Egypt
关键词
Fractional calculus; Sobolev-type fractional stochastic integrodifferential equation; Controllability; Nonlocal conditions; Uniformly continuous semigroup; Mild solution; Fixed point technique; DIFFERENTIAL-EQUATIONS; CONTROLLABILITY; SYSTEMS;
D O I
10.1007/s10959-016-0665-9
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We prove the existence of mild solution to Sobolev-type fractional stochastic integrodifferential equation with nonlocal conditions in Hilbert space. Also, we study the controllability of Sobolev-type fractional stochastic integrodifferential equations with impulsive conditions. We use uniformly continuous semigroups and fixed point technique for the main results. An example is provided to illustrate the theory.
引用
收藏
页码:771 / 783
页数:13
相关论文
共 31 条
[1]  
Agarwal S, 2006, J APPL MATH STOC ANA, DOI [10.1155/JAMSA/2006/16308,(2006), DOI 10.1155/JAMSA/2006/16308,(2006)]
[2]  
Ahmed H. M., 2013, J THEOR PROBAB, V24, P1
[3]  
Ahmed Hamdy M., 2012, ADV DIFF EQU, V2012, P1
[4]  
Ahmed Hamdy M, 2009, INT J MATH MATH SCI, V2009, P8
[5]   Controllability of fractional stochastic delay equations [J].
Ahmed H.M. .
Lobachevskii Journal of Mathematics, 2009, 30 (3) :195-202
[6]  
[Anonymous], 2000, Econophysics: An Emerging Science
[7]  
[Anonymous], 1999, FRACTIONAL DIFFERENT
[8]  
[Anonymous], 1987, FRACTIONAL INTEGRALS
[9]   Sobolev type integrodifferential equation with nonlocal condition in Banach spaces [J].
Balachandran, K ;
Park, JY .
TAIWANESE JOURNAL OF MATHEMATICS, 2003, 7 (01) :155-163
[10]  
Barenblatt G.E., 1960, J APPL MATH USSR, V24, P12861303, DOI [10.1016/0021-8928(60)90107-6, DOI 10.1016/0021-8928(60)90107-6]