Minimal Path based Particle Tracking in Low SNR Fluorescence Microscopy Images

被引:3
作者
Lu, Sheng [1 ]
Chen, Tong [1 ]
Yang, Fan [1 ]
Peng, Chenglei [1 ]
Du, Sidan [1 ]
Li, Yang [1 ]
机构
[1] Nanjing Univ, Sch Elect Sci & Engn, 163 Xianlin Ave, Nanjing, Peoples R China
来源
PROCEEDINGS OF 2019 4TH INTERNATIONAL CONFERENCE ON BIOMEDICAL SIGNAL AND IMAGE PROCESSING (ICBIP 2019) | 2019年
关键词
Single particle tracking; Low SNR; Minimal path theory;
D O I
10.1145/3354031.3354035
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Single Particle Tracking (SPT) in fluorescence microscopy image is of great importance in the field of computational biology. Automatic or slightly interactive tracking algorithms are essential for the motional analysis of micro particles. Even with prior knowledge, conventional methods may fail when the signal-to-noise ratio (SNR) is too low because they highly depend on the quality of the image and the results of detection. To reliably track particles in the low SNR images, we proposed a novel method based on minimal path theory and attempted to extract complete trajectories between two points. Our method was evaluated on several simulated image sequences and showed its accuracy and robustness in the task of particle tracking.
引用
收藏
页码:93 / 97
页数:5
相关论文
共 15 条
  • [1] Single quantum dot tracking based on perceptual grouping using minimal paths in a spatiotemporal volume
    Bonneau, S
    Dahan, M
    Cohen, LD
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2005, 14 (09) : 1384 - 1395
  • [2] Cell tracking in microscopic video using matching and linking of bipartite graphs
    Chatterjee, Rohit
    Ghosh, Mayukh
    Chowdhury, Ananda S.
    Ray, Nilanjan
    [J]. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2013, 112 (03) : 422 - 431
  • [3] Curve-Like Structure Extraction Using Minimal Path Propagation With Backtracking
    Chen, Yang
    Zhang, Yudong
    Yang, Jian
    Cao, Qing
    Yang, Guanyu
    Chen, Jian
    Shu, Huazhong
    Luo, Limin
    Coatrieux, Jean-Louis
    Feng, Qianjing
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2016, 25 (02) : 988 - 1003
  • [4] Measure and model a 3-D space-variant PSF for fluorescence microscopy image deblurring
    Chen, Yemeng
    Chen, Mengmeng
    Zhu, Li
    Wu, Jane Y.
    Du, Sidan
    Li, Yang
    [J]. OPTICS EXPRESS, 2018, 26 (11): : 14375 - 14391
  • [5] Global minimum for active contour models: A minimal path approach
    Cohen, LD
    Kimmel, R
    [J]. INTERNATIONAL JOURNAL OF COMPUTER VISION, 1997, 24 (01) : 57 - 78
  • [6] Garrido S, 2015, MECH MACH SCI, V29, P223, DOI 10.1007/978-3-319-14705-5_8
  • [7] Review - The fluorescent toolbox for assessing protein location and function
    Giepmans, BNG
    Adams, SR
    Ellisman, MH
    Tsien, RY
    [J]. SCIENCE, 2006, 312 (5771) : 217 - 224
  • [8] Robust single-particle tracking in live-cell time-lapse sequences
    Jaqaman, Khuloud
    Loerke, Dinah
    Mettlen, Marcel
    Kuwata, Hirotaka
    Grinstein, Sergio
    Schmid, Sandra L.
    Danuser, Gaudenz
    [J]. NATURE METHODS, 2008, 5 (08) : 695 - 702
  • [9] Advances in the speed and resolution of light microscopy
    Ji, Na
    Shroff, Hari
    Zhong, Haining
    Betzig, Eric
    [J]. CURRENT OPINION IN NEUROBIOLOGY, 2008, 18 (06) : 605 - 616
  • [10] Detection of molecular particles in live cells via machine learning
    Jiang, Shan
    Zhou, Xiaobo
    Kirchhausen, Tom
    Wong, Stephen T. C.
    [J]. CYTOMETRY PART A, 2007, 71A (08) : 563 - 575