Several Gruss' type inequalities for the complex integral

被引:0
|
作者
Dragomir, Silvestru Sever [1 ,2 ]
机构
[1] Victoria Univ, Coll Engn & Sci, Math, POB 14428, Melbourne, MC 8001, Australia
[2] Univ Witwatersrand, Sch Comp Sci & Appl Math, DST NRF Ctr Excellence Math & Stat Sci, Private Bag 3, ZA-2050 Johannesburg, South Africa
关键词
Complex integral; Continuous functions; Holomorphic functions; Gruss inequality; 26D15; 26D10; 30A10; 30A86; TRAPEZOID-TYPE INEQUALITIES; UNITARY OPERATORS; CIRCLE;
D O I
10.1007/s41478-020-00268-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Assume that f and g are continuous on gamma, gamma subset of C is a piecewise smooth path parametrized by zIn this paper we establish some bounds for the magnitude of the functional D gamma and a related version of this under various assumptions for the functions f and g and provide some examples for circular paths.
引用
收藏
页码:337 / 351
页数:15
相关论文
共 50 条
  • [1] On some Gruss' type inequalities for the complex integral
    Dragomir, Silvestru Sever
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2019, 113 (04) : 3531 - 3543
  • [2] Several Grüss’ type inequalities for the complex integral
    Silvestru Sever Dragomir
    The Journal of Analysis, 2021, 29 : 337 - 351
  • [3] Gruss type and related integral inequalities in probability spaces
    Horvath, Laszlo
    AEQUATIONES MATHEMATICAE, 2019, 93 (04) : 743 - 756
  • [4] WEIGHTED INTEGRAL INEQUALITIES OF EULER-GRUSS TYPE WITH APPLICATIONS
    Penava, Mihaela Ribicic
    TRANSACTIONS OF A RAZMADZE MATHEMATICAL INSTITUTE, 2021, 175 (03) : 393 - 401
  • [5] On some Grüss’ type inequalities for the complex integral
    Silvestru Sever Dragomir
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2019, 113 : 3531 - 3543
  • [6] Certain Gruss type inequalities involving the generalized fractional integral operator
    Wang, Guotao
    Agarwal, Praveen
    Chand, Mehar
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2014,
  • [7] Gruss-type inequalities
    Li, X
    Mohapatra, RN
    Rodriguez, RS
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2002, 267 (02) : 434 - 443
  • [8] Gruss type integral inequalities for a new class of k-fractional integrals
    Habib, Sidra
    Farid, Ghulam
    Mubeen, Shahid
    INTERNATIONAL JOURNAL OF NONLINEAR ANALYSIS AND APPLICATIONS, 2021, 12 (01): : 541 - 554
  • [9] Some Gruss-type inequalities using generalized Katugampola fractional integral
    Aljaaidi, Tariq A.
    Pachpatte, Deepak B.
    AIMS MATHEMATICS, 2020, 5 (02): : 1011 - 1024
  • [10] Some inequalities of the Gruss type for conformable k-fractional integral operators
    Rahman, Gauhar
    Nisar, Kottakkaran Sooppy
    Ghaffar, Abdul
    Qi, Feng
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2020, 114 (01)