Single-image super-resolution via selective multi-scale network

被引:1
|
作者
He, Zewei [1 ,2 ]
Ding, Binjie [1 ,2 ]
Fu, Guizhong [3 ]
Cao, Yanpeng [1 ,2 ]
Yang, Jiangxin [1 ,2 ]
Cao, Yanlong [1 ,2 ]
机构
[1] Zhejiang Univ, Sch Mech Engn, State Key Lab Fluid Power & Mech Syst, Hangzhou 310027, Peoples R China
[2] Zhejiang Univ, Sch Mech Engn, Key Lab Adv Mfg Technol Zhejiang Prov, Hangzhou 310027, Peoples R China
[3] Suzhou Univ Sci & Technol, Sch Mech Engn, Suzhou 215009, Peoples R China
基金
中国国家自然科学基金;
关键词
Super-resolution; Convolutional neural network; Selective multi-scale network; Feature fusion;
D O I
10.1007/s11760-021-02038-6
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, we aim to improve the performance of single-image super-resolution (SISR) by designing a more effective feature extraction module and a better fusion scheme for integrating hierarchical features. Firstly, we propose a selective multi-scale module (SMsM) to adaptively aggregate multi-scale features via self-learned weights and thus extract more distinctive representation. Then, we design an attentive global feature fusion (AGFF) scheme to reduce the redundant information inside the extracted hierarchical features by employing a gate mechanism (in the form of group convolution) and adaptively re-calibrate the features with channel-wise attention weights before fusion. Stacked SMsMs and AGFF compose a novel network which is termed selective multi-scale network (SMsN). Extensive experimental results demonstrate that our SMsN model outperforms some state-of-the-art SISR methods in terms of accuracy and efficiency.
引用
收藏
页码:937 / 945
页数:9
相关论文
共 50 条
  • [31] Single image super-resolution with lightweight multi-scale dilated attention network
    Song, Xiaogang
    Pang, Xinchao
    Zhang, Lei
    Lu, Xiaofeng
    Hei, Xinhong
    APPLIED SOFT COMPUTING, 2025, 169
  • [32] Lightweight Attended Multi-Scale Residual Network for Single Image Super-Resolution
    Yan, Yitong
    Xu, Xue
    Chen, Wenhui
    Peng, Xinyi
    IEEE ACCESS, 2021, 9 (09): : 52202 - 52212
  • [33] A Channel-Wise Multi-Scale Network for Single Image Super-Resolution
    Ji, Jiahuan
    Zhong, Baojiang
    Wu, Qihui
    Ma, Kai-Kuang
    IEEE SIGNAL PROCESSING LETTERS, 2024, 31 : 805 - 809
  • [34] Compressed multi-scale feature fusion network for single image super-resolution
    Fan, Xinxia
    Yang, Yanhua
    Deng, Cheng
    Xu, Jie
    Gao, Xinbo
    SIGNAL PROCESSING, 2018, 146 : 50 - 60
  • [35] Multi-scale feature fusion residual network for Single Image Super-Resolution
    Qin, Jinghui
    Huang, Yongjie
    Wen, Wushao
    NEUROCOMPUTING, 2020, 379 (379) : 334 - 342
  • [36] Single-image super-resolution reconstruction via generative adversarial network
    Ju, Chunwu
    Su, Xiuqin
    Yang, Haoyuan
    Ning, Hailong
    9TH INTERNATIONAL SYMPOSIUM ON ADVANCED OPTICAL MANUFACTURING AND TESTING TECHNOLOGIES: OPTOELECTRONIC MATERIALS AND DEVICES FOR SENSING AND IMAGING, 2019, 10843
  • [37] Multi-scale feature learning network with channel self-attention for remote sensing single-image super-resolution
    Wang, Xueqin
    Jiang, Wenzong
    Zhao, Lifei
    Liu, Baodi
    Wang, Yanjiang
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2022, 43 (18) : 6669 - 6688
  • [38] Multi-scale gated network for efficient image super-resolution
    Miao, Xuan
    Li, Shijie
    Li, Zheng
    Xu, Wenzheng
    Yang, Ning
    VISUAL COMPUTER, 2025, 41 (02): : 1227 - 1239
  • [39] Multi-scale generative adversarial network for image super-resolution
    Jiang Daihong
    Zhang Sai
    Dai Lei
    Dai Yueming
    Soft Computing, 2022, 26 : 3631 - 3641
  • [40] Multi-scale fractal residual network for image super-resolution
    Xinxin Feng
    Xianguo Li
    Jianxiong Li
    Applied Intelligence, 2021, 51 : 1845 - 1856