EXPONENTIAL MOMENTS OF AFFINE PROCESSES

被引:45
作者
Keller-Ressel, Martin [1 ]
Mayerhofer, Eberhard [2 ]
机构
[1] Tech Univ Berlin, Inst Math, Fak 2, D-10623 Berlin, Germany
[2] Dublin City Univ, Sch Math Sci, Dublin 9, Ireland
关键词
Affine process; exponential moment; Riccati equation; financial modeling; STOCHASTIC VOLATILITY; TERM STRUCTURE; MODELS; EXPLOSIONS; OPTIONS; JUMPS;
D O I
10.1214/14-AAP1009
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We investigate the maximal domain of the moment generating function of affine processes in the sense of Duffle, Filipovie and Schachermayer [Ann. AppL Probab. 13 (2003) 984-1053], and we show the validity of the affine transform formula that connects exponential moments with the solution of a generalized Riccati differential equation. Our result extends and unifies those preceding it (e.g., Glasserman and Kim [Math. Finance 20 (2010) 1-33], Filipovie and Mayerhofer [Radon Ser. Comput. Appl. Math. 8 (2009) 1-40] and Kallsen and Muhle-Karbe [Stochastic Process Appl. 120 (2010) 163-181]) in that it allows processes with very general jump behavior, applies to any convex state space and provides both sufficient and necessary conditions for finiteness of exponential moments.
引用
收藏
页码:714 / 752
页数:39
相关论文
共 35 条