Kinetic Analysis and Design of Experiments to Identify the Catalytic Mechanism of the Monocarboxylate Transporter Isoforms 4 and 1

被引:11
作者
Vinnakota, Kalyan C.
Beard, Daniel A. [1 ]
机构
[1] Med Coll Wisconsin, Biotechnol & Bioengn Ctr, Milwaukee, WI 53226 USA
基金
美国国家卫生研究院;
关键词
SARCOLEMMAL GIANT VESICLES; LACTATE-PROTON COTRANSPORT; LACTIC-ACID EFFLUX; SKELETAL-MUSCLE; PH; MCT4; HEART;
D O I
10.1016/j.bpj.2010.11.079
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
Transport of lactate, pyruvate, and other monocarboxylates across the sarcolemma of skeletal and cardiac myocytes occurs via passive diffusion and by monocarboxylate transporter (MCT) mediated transport. The flux of lactate and protons through the MCT plays an important role in muscle energy metabolism during rest and exercise and in pH regulation during exercise. The MCT isoforms 1 and 4 are the major isoforms of this transporter in skeletal and cardiac muscle. The current consensus on the mechanism of these transporters, based on experimental measurements of labeled lactate fluxes, is that monocarboxylate-proton symport occurs via a rapid-equilibrium ordered mechanism with proton binding followed by monocarboxylate binding. This study tests ordered and random mechanisms by fitting experimental measurements of tracer exchange fluxes from MCT1 and MCT4 isoforms to theoretical predictions derived using relationships between one-way fluxes and thermodynamic forces. Analysis shows that: 1), the available kinetic data are insufficient to distinguish between a rapid-equilibrium ordered and a rapid-equilibrium random-binding model for MCT4; 2), MCT1 has a higher affinity to lactate than does MCT4; 3), the theoretical conditions for the so-called trans-acceleration phenomenon (e.g., increased tracer efflux from a vesicle caused by increased substrate concentration outside the vesicle) do not necessarily require the rate constant for the lactate and proton bound transporter to reorient across the membrane to be higher than that for the unbound transporter; and finally, 4), based on model analysis, additional experiments are proposed to be able to distinguish between ordered and random-binding mechanisms.
引用
收藏
页码:369 / 380
页数:12
相关论文
共 21 条
[1]  
[Anonymous], 2002, An introduction to genetic algorithms for numerical optimization
[2]  
[Anonymous], 2004, NIST STANDARD REFERE, DOI DOI 10.18434/T4D303
[3]   Relationship between Thermodynamic Driving Force and One-Way Fluxes in Reversible Processes [J].
Beard, Daniel A. ;
Qian, Hong .
PLOS ONE, 2007, 2 (01)
[4]   The expression of lactate transporters (MCT1 and MCT4) in heart and muscle [J].
Bonen, A .
EUROPEAN JOURNAL OF APPLIED PHYSIOLOGY, 2001, 86 (01) :6-11
[5]   Abundance and subcellular distribution of MCT1 and MCT4 in heart and fast-twitch skeletal muscles [J].
Bonen, A ;
Miskovic, D ;
Tonouchi, M ;
Lemieux, K ;
Wilson, MC ;
Marette, A ;
Halestrap, AP .
AMERICAN JOURNAL OF PHYSIOLOGY-ENDOCRINOLOGY AND METABOLISM, 2000, 278 (06) :E1067-E1077
[6]   Characterization of the monocarboxylate transporter 1 expressed in Xenopus laevis oocytes by changes in cytosolic pH [J].
Bröer, S ;
Schneider, HP ;
Bröer, A ;
Rahman, B ;
Hamprecht, B ;
Deitmer, JW .
BIOCHEMICAL JOURNAL, 1998, 333 :167-174
[7]  
Charbonneau P., 2002, RELEASE NOTES PIKAIA
[8]   The low-affinity monocarboxylate transporter MCT4 is adapted to the export of lactate in highly glycolytic cells [J].
Dimmer, KS ;
Friedrich, B ;
Lang, F ;
Deitmer, JW ;
Bröer, S .
BIOCHEMICAL JOURNAL, 2000, 350 :219-227
[9]   Characterisation of human monocarboxylate transporter 4 substantiates its role in lactic acid efflux from skeletal muscle [J].
Fox, JEM ;
Meredith, D ;
Halestrap, AP .
JOURNAL OF PHYSIOLOGY-LONDON, 2000, 529 (02) :285-293
[10]   The proton-linked monocarboxylate transporter (MCT) family: structure, function and regulation [J].
Halestrap, AP ;
Price, NT .
BIOCHEMICAL JOURNAL, 1999, 343 :281-299