STRONG TIME-PERIODIC SOLUTIONS TO CHEMOTAXIS-NAVIER-STOKES EQUATIONS ON BOUNDED DOMAINS

被引:3
作者
Watanabe, Keiichi [1 ]
机构
[1] Waseda Univ, Tokyo, Japan
关键词
Chemotaxis-Navier-Stokes equations; convex domains; strong periodic solution; maximal regularity; Arendt-Bu theorem; H-INFINITY-CALCULUS; OPERATOR; SYSTEM; REGULARITY; EXISTENCE; THEOREM;
D O I
10.3934/dcds.2022114
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Consider the chemotaxis-Navier-Stokes equations on a bounded convex domain Omega subset of R-3, where the boundary partial derivative Omega of Omega is not necessarily smooth. It is shown that this system admits a unique strong 2 pi-periodic solution provided that given 2 pi-periodic forcing functions are sufficiently small in their natural norm. The result may extend to general cases Omega subset of R-d, d >= 2, if one additionally assumes that partial derivative Omega is of class C-3. The nonnegativity of solutions is also discussed.
引用
收藏
页码:5577 / 5590
页数:14
相关论文
共 20 条
[1]   The operator-valued Marcinkiewicz multiplier theorem and maximal regularity [J].
Arendt, W ;
Bu, SQ .
MATHEMATISCHE ZEITSCHRIFT, 2002, 240 (02) :311-343
[2]  
Brown RM, 1995, INDIANA U MATH J, V44, P1183
[3]  
Grisvard P, 2011, CLASS APPL MATH, V69, P1, DOI 10.1137/1.9781611972030
[4]  
Hieber M., 2021, Partial Differential Equations Appl., V2
[5]   Strong time periodic solutions to Keller-Segel systems: An approach by the quasilinear Arendt-Bu theorem [J].
Hieber, Matthias ;
Stinner, Christian .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2020, 269 (02) :1636-1655
[6]   A user's guide to PDE models for chemotaxis [J].
Hillen, T. ;
Painter, K. J. .
JOURNAL OF MATHEMATICAL BIOLOGY, 2009, 58 (1-2) :183-217
[7]   Global existence and asymptotic behavior of solutions to a chemotaxis-fluid system on general bounded domains [J].
Jiang, Jie ;
Wu, Hao ;
Zheng, Songmu .
ASYMPTOTIC ANALYSIS, 2015, 92 (3-4) :249-258
[8]   Large time periodic solutions to coupled chemotaxis-fluid models [J].
Jin, Chunhua .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2017, 68 (06)
[9]   Existence and uniqueness theorem on mild solutions to the Keller-Segel system coupled with the Navier-Stokes fluid [J].
Kozono, Hideo ;
Miura, Masanari ;
Sugiyama, Yoshie .
JOURNAL OF FUNCTIONAL ANALYSIS, 2016, 270 (05) :1663-1683
[10]  
Kunstmann PC, 2017, J EVOL EQU, V17, P387, DOI 10.1007/s00028-016-0360-4