Quantitative Ultrasound Assessment of Duchenne Muscular Dystrophy Using Edge Detection Analysis

被引:12
|
作者
Koppaka, Sisir [1 ,2 ]
Shklyar, Irina [3 ]
Rutkove, Seward B. [3 ]
Darras, Basil T. [5 ]
Anthony, Brian W. [1 ,2 ]
Zaidman, Craig M. [6 ,7 ]
Wu, Jim S. [4 ]
机构
[1] MIT, Lab Mfg & Prod, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[2] MIT, Med Elect Device Realizat Ctr, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[3] Beth Israel Deaconess Med Ctr, Dept Neurol, Boston, MA 02215 USA
[4] Beth Israel Deaconess Med Ctr, Dept Radiol, 330 Brookline Ave, Boston, MA 02215 USA
[5] Boston Childrens Hosp, Dept Neurol, Boston, MA USA
[6] Washington Univ, Dept Neurol, St Louis, MO USA
[7] Washington Univ, Dept Pediat, St Louis, MO 63130 USA
基金
美国国家卫生研究院;
关键词
Duchenne muscular dystrophy; edge detection; muscle; musculoskeletal ultrasound; quantitative ultrasound; 6-MINUTE WALK TEST; MUSCLE ULTRASOUND; IMAGES; ALGORITHM; ATROPHY; TOOL;
D O I
10.7863/ultra.15.04065
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
Objectives-The purpose of this study was to investigate the ability of quantitative ultrasound (US) using edge detection analysis to assess patients with Duchenne muscular dystrophy (DMD). Methods-After Institutional Review Board approval, US examinations with fixed technical parameters were performed unilaterally in 6 muscles (biceps, deltoid, wrist flexors, quadriceps, medial gastrocnemius, and tibialis anterior) in 19 boys with DMD and 21 age-matched control participants. The muscles of interest were outlined by a tracing tool, and the upper third of the muscle was used for analysis. Edge detection values for each muscle were quantified by the Canny edge detection algorithm and then normalized to the number of edge pixels in the muscle region. The edge detection values were extracted at multiple sensitivity thresholds (0.01-0.99) to determine the optimal threshold for distinguishing DMD from normal. Area under the receiver operating curve values were generated for each muscle and averaged across the 6 muscles. Results-The average age in the DMD group was 8.8 years (range, 3.0-14.3 years), and the average age in the control group was 8.7 years (range, 3.4-13.5 years). For edge detection, a Canny threshold of 0.05 provided the best discrimination between DMD and normal (area under the curve, 0.96; 95% confidence interval, 0.84-1.00). According to a Mann-Whitney test, edge detection values were significantly different between DMD and controls (P < .0001). Conclusions-Quantitative US imaging using edge detection can distinguish patients with DMD from healthy controls at low Canny thresholds, at which discrimination of small structures is best. Edge detection by itself or in combination with other tests can potentially serve as a useful biomarker of disease progression and effectiveness of therapy in muscle disorders.
引用
收藏
页码:1889 / 1897
页数:9
相关论文
共 50 条
  • [11] Quantitative MRI and strength measurements in the assessment of muscle quality in Duchenne muscular dystrophy
    Wokke, B. H.
    van den Bergen, J. C.
    Versluis, M. J.
    Niks, E. H.
    Milles, J.
    Webb, A. G.
    van Zwet, E. W.
    Aartsma-Rus, A.
    Verschuuren, J. J.
    Kan, H. E.
    NEUROMUSCULAR DISORDERS, 2014, 24 (05) : 409 - 416
  • [12] Quantitative muscle ultrasound in children with Duchenne muscular dystrophy: Comparing to magnetic resonance imaging
    Hu, Jun
    Jiang, Li
    Hong, Siqi
    Cheng, Li
    Wang, Qiao
    Peng, Xuehua
    Qin, Jiaqiang
    Zou, Lin
    JOURNAL OF CLINICAL ULTRASOUND, 2023, 51 (04) : 674 - 679
  • [13] Motor assessment in patients with Duchenne muscular dystrophy
    Campolina Diniz, Gabriela Palhares
    Belizario Facury Lasmar, Laura Maria de Lima
    Giannetti, Juliana Gurgel
    ARQUIVOS DE NEURO-PSIQUIATRIA, 2012, 70 (06) : 416 - 421
  • [14] Early neurodevelopmental assessment in Duchenne muscular dystrophy
    Pane, Marika
    Scalise, Roberta
    Berardinelli, Angela
    D'Angelo, Grazia
    Ricotti, Valeria
    Alfieri, Paolo
    Moroni, Isabella
    Hartley, Louise
    Pera, Maria Carmela
    Baranello, Giovanni
    Catteruccia, Michela
    Casalino, Tiziana
    Romeo, Domenico M.
    Graziano, Alessandra
    Gandioli, Claudia
    Bianco, Flaviana
    Mazzone, Elena Stacy
    Lombardo, Maria Elena
    Scoto, Mariacristina
    Sivo, Serena
    Palermo, Concetta
    Gualandi, Francesca
    Sormani, Maria Pia
    Ferlini, Alessandra
    Bertini, Enrico
    Muntoni, Francesco
    Mercuri, Eugenio
    NEUROMUSCULAR DISORDERS, 2013, 23 (06) : 451 - 455
  • [15] Compositional analysis of muscle in boys with Duchenne muscular dystrophy using MR imaging
    Marden, FA
    Connolly, AM
    Siegel, MJ
    Rubin, DA
    SKELETAL RADIOLOGY, 2005, 34 (03) : 140 - 148
  • [16] Quantitative electromyography in ambulatory boys with Duchenne muscular dystrophy
    Verma, Sumit
    Lin, Jenny
    Travers, Curtis
    McCracken, Courtney
    Shah, Durga
    MUSCLE & NERVE, 2017, 56 (06) : 1168 - 1171
  • [17] Compositional analysis of muscle in boys with Duchenne muscular dystrophy using MR imaging
    Franklin A. Marden
    Anne M. Connolly
    Marilyn J. Siegel
    David A. Rubin
    Skeletal Radiology, 2005, 34 : 140 - 148
  • [18] CARRIER DETECTION BY DNA ANALYSIS IN DUCHENNE MUSCULAR-DYSTROPHY FAMILIES
    BATTALOGLU, E
    TELATAR, M
    DEYMEER, F
    SERDAROGLU, P
    OZDEMIR, C
    KUSEYRI, F
    APAK, MY
    TOLUN, A
    TURKISH JOURNAL OF PEDIATRICS, 1992, 34 (02) : 79 - 92
  • [19] Quantitative muscle ultrasound is a promising longitudinal follow-up tool in Duchenne muscular dystrophy
    Jansen, Merel
    van Alfen, Nens
    van der Sanden, Maria W. G. Nijhuis
    van Dijk, Johannes P.
    Pillen, Sigrid
    de Groot, Imelda J. M.
    NEUROMUSCULAR DISORDERS, 2012, 22 (04) : 306 - 317
  • [20] Assessment of Muscular Stiffness in Children with Duchenne Muscular Dystrophy using Real-Time Elastography
    Gungor, G.
    Gungor, O.
    Menzilcioglu, M. S.
    NIGERIAN JOURNAL OF CLINICAL PRACTICE, 2025, 28 (02) : 232 - 236