A residual-based error estimator for BEM-discretizations of contact problems

被引:12
作者
Eck, C
Wendland, WL [1 ]
机构
[1] Univ Stuttgart, Inst Angew Anal & Numer Simulat, Lehrstuhl 6, D-7000 Stuttgart, Germany
[2] Univ Erlangen Nurnberg, Inst Angew Math, D-8520 Erlangen, Germany
关键词
D O I
10.1007/s00211-002-0425-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We develop an a posteriori error estimate for boundary element solutions of static contact problems without friction. The presented result is based on an error estimate for linear pseudodifferential equations and on a certain commutator property for pseudodifferential operators. A heuristic extension of the obtained error estimate to frictional contact problems is presented, too. Numerical examples indicate a good performance of the error estimator for both the frictionless and the frictional problem.
引用
收藏
页码:253 / 282
页数:30
相关论文
共 50 条
[41]   Reliable Residual-Based Error Estimation for the Finite Cell Method [J].
Di Stolfo, Paolo ;
Schroeder, Andreas .
JOURNAL OF SCIENTIFIC COMPUTING, 2021, 87 (01)
[42]   Residual-based a posteriori error estimates for symmetric conforming mixed finite elements for linear elasticity problems [J].
Chen, Long ;
Hu, Jun ;
Huang, Xuehai ;
Man, Hongying .
SCIENCE CHINA-MATHEMATICS, 2018, 61 (06) :973-992
[43]   Reliable Residual-Based Error Estimation for the Finite Cell Method [J].
Paolo Di Stolfo ;
Andreas Schröder .
Journal of Scientific Computing, 2021, 87
[44]   REFINED FULLY EXPLICIT A POSTERIORI RESIDUAL-BASED ERROR CONTROL [J].
Carstensen, C. ;
Merdon, C. .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2014, 52 (04) :1709-1728
[45]   Residual-based a posteriori error estimate for hypersingular equation on surfaces [J].
Carsten Carstensen ;
M. Maischak ;
D Praetorius ;
E.P. Stephan .
Numerische Mathematik, 2004, 97 :397-425
[46]   Residual-based a posteriori error estimates for symmetric conforming mixed finite elements for linear elasticity problems [J].
Long Chen ;
Jun Hu ;
Xuehai Huang ;
Hongying Man .
Science China Mathematics, 2018, 61 :973-992
[47]   RESIDUAL-BASED A POSTERIORI ERROR ESTIMATION FOR ELLIPTIC INTERFACE PROBLEMS APPROXIMATED BY IMMERSED FINITE ELEMENT METHODS [J].
Chen, Yanping ;
Lu, Jiao ;
Wang, Yang ;
Huang, Yunqing .
COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2023, 21 (04) :997-1018
[48]   Residual-based error correction for neural operator accelerated infinite-dimensional Bayesian inverse problems [J].
Cao, Lianghao ;
O'Leary-Roseberry, Thomas ;
Jha, Prashant K. ;
Oden, J. Tinsley ;
Ghattas, Omar .
JOURNAL OF COMPUTATIONAL PHYSICS, 2023, 486
[49]   Residual-based a posteriori error estimates for symmetric conforming mixed finite elements for linear elasticity problems [J].
Long Chen ;
Jun Hu ;
Xuehai Huang ;
Hongying Man .
Science China(Mathematics), 2018, 61 (06) :973-992
[50]   A priori error estimates for hp penalty BEM for contact problems in elasticity [J].
Chernov, A. ;
Maischak, M. ;
Stephan, E. P. .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2007, 196 (37-40) :3871-3880