A residual-based error estimator for BEM-discretizations of contact problems

被引:12
作者
Eck, C
Wendland, WL [1 ]
机构
[1] Univ Stuttgart, Inst Angew Anal & Numer Simulat, Lehrstuhl 6, D-7000 Stuttgart, Germany
[2] Univ Erlangen Nurnberg, Inst Angew Math, D-8520 Erlangen, Germany
关键词
D O I
10.1007/s00211-002-0425-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We develop an a posteriori error estimate for boundary element solutions of static contact problems without friction. The presented result is based on an error estimate for linear pseudodifferential equations and on a certain commutator property for pseudodifferential operators. A heuristic extension of the obtained error estimate to frictional contact problems is presented, too. Numerical examples indicate a good performance of the error estimator for both the frictionless and the frictional problem.
引用
收藏
页码:253 / 282
页数:30
相关论文
共 50 条
[31]   A residual-based a posteriori error estimator for a fully-mixed formulation of the Stokes-Darcy coupled problem [J].
Gatica, Gabriel N. ;
Oyarzua, Ricardo ;
Sayas, Francisco-Javier .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2011, 200 (21-22) :1877-1891
[32]   A residual-based error formula for a class of transport equations [J].
Junk, M ;
Unterreiter, A ;
Zingsheim, F .
EUROPEAN JOURNAL OF APPLIED MATHEMATICS, 2003, 14 :181-200
[33]   Evaluating multiplicative error models: A residual-based approach [J].
Ke, Rui ;
Lu, Wanbo ;
Jia, Jing .
COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2021, 153
[34]   Residual-based a posteriori error estimators for algebraic stabilizations [J].
Jha, Abhinav .
APPLIED MATHEMATICS LETTERS, 2024, 157
[35]   Superconvergence and the use of the residual as an error estimator in the BEM. II: Collocation, numerical integration and error indicators [J].
Golberg, MA ;
Bowman, H .
ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2001, 25 (07) :511-521
[36]   Residual-based a posteriori error estimates for nonconforming finite element approximation to parabolic interface problems [J].
Ray, Tanushree ;
Sinha, Rajen Kumar .
NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2023, 39 (04) :2935-2962
[37]   A POLYNOMIAL-DEGREE-ROBUST A POSTERIORI ERROR ESTIMATOR FOR NEDELEC DISCRETIZATIONS OF MAGNETOSTATIC PROBLEMS [J].
Gedicke, Joscha ;
Geevers, Sjoerd ;
Perugia, Ilaria ;
Schoeberl, Joachim .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2021, 59 (04) :2237-2253
[38]   On residual-based a posteriori error estimation in hp-FEM [J].
J.M. Melenk ;
B.I. Wohlmuth .
Advances in Computational Mathematics, 2001, 15 :311-331
[39]   On the necessity of non-conforming algorithms for 'small displacement' contact problems and conforming discretizations by BEM [J].
Blazquez, A. ;
Paris, F. .
ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2009, 33 (02) :184-190
[40]   On residual-based a posteriori error estimation in hp-FEM [J].
Melenk, JM ;
Wohlmuth, BI .
ADVANCES IN COMPUTATIONAL MATHEMATICS, 2001, 15 (1-4) :311-331