Local discontinuous Galerkin methods for the Cahn-Hilliard type equations

被引:123
作者
Xia, Yinhua
Xu, Yan
Shu, Chi-Wang [1 ]
机构
[1] Univ Sci & Technol China, Dept Math, Hefei 230026, Peoples R China
[2] Univ Twente, Dept Appl Math, NL-7500 AE Enschede, Netherlands
[3] Brown Univ, Div Appl Math, Providence, RI 02912 USA
基金
中国国家自然科学基金; 美国国家科学基金会;
关键词
Cahn-Hilliard equation; Cahn-Hilliard system; local discontinuous Galerkin methods; stability;
D O I
10.1016/j.jcp.2007.08.001
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this paper, we develop local discontinuous Galerkin (LDG) methods for the fourth order nonlinear Cahn-Hilliar equation and system. The energy stability of the LDG methods is proved for the general nonlinear case. Numerical examples for the Cahn-Hilliard equation and the Cahn-Hilliard system in one and two dimensions are presented and if numerical results illustrate the accuracy and capability of the methods. (C) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:472 / 491
页数:20
相关论文
共 37 条
[11]   The Runge-Kutta discontinuous Galerkin method for conservation laws V - Multidimensional systems [J].
Cockburn, B ;
Shu, CW .
JOURNAL OF COMPUTATIONAL PHYSICS, 1998, 141 (02) :199-224
[12]   TVB RUNGE-KUTTA LOCAL PROJECTION DISCONTINUOUS GALERKIN FINITE-ELEMENT METHOD FOR CONSERVATION-LAWS .2. GENERAL FRAMEWORK [J].
COCKBURN, B ;
SHU, CW .
MATHEMATICS OF COMPUTATION, 1989, 52 (186) :411-435
[13]   THE RUNGE-KUTTA LOCAL PROJECTION DISCONTINUOUS GALERKIN FINITE-ELEMENT METHOD FOR CONSERVATION-LAWS .4. THE MULTIDIMENSIONAL CASE [J].
COCKBURN, B ;
HOU, SC ;
SHU, CW .
MATHEMATICS OF COMPUTATION, 1990, 54 (190) :545-581
[14]   TVB RUNGE-KUTTA LOCAL PROJECTION DISCONTINUOUS GALERKIN FINITE-ELEMENT METHOD FOR CONSERVATION-LAWS .3. ONE-DIMENSIONAL SYSTEMS [J].
COCKBURN, B ;
LIN, SY ;
SHU, CW .
JOURNAL OF COMPUTATIONAL PHYSICS, 1989, 84 (01) :90-113
[15]   NUMERICAL-ANALYSIS OF THE CAHN-HILLIARD EQUATION WITH A LOGARITHMIC FREE-ENERGY [J].
COPETTI, MIM ;
ELLIOTT, CM .
NUMERISCHE MATHEMATIK, 1992, 63 (01) :39-65
[16]   A 2ND-ORDER SPLITTING METHOD FOR THE CAHN-HILLIARD EQUATION [J].
ELLIOTT, CM ;
FRENCH, DA ;
MILNER, FA .
NUMERISCHE MATHEMATIK, 1989, 54 (05) :575-590
[17]   On the Cahn-Hilliard equation with degenerate mobility [J].
Elliott, CM ;
Garcke, H .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1996, 27 (02) :404-423
[18]   A NONCONFORMING FINITE-ELEMENT METHOD FOR THE TWO-DIMENSIONAL CAHN-HILLIARD EQUATION [J].
ELLIOTT, CM ;
FRENCH, DA .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1989, 26 (04) :884-903
[19]   SYSTEMS OF CAHN-HILLIARD EQUATIONS [J].
EYRE, DJ .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1993, 53 (06) :1686-1712
[20]  
Feng XB, 2004, MATH COMPUT, V73, P541, DOI 10.1090/S0025-5718-03-01588-6