Local discontinuous Galerkin methods for the Cahn-Hilliard type equations

被引:123
作者
Xia, Yinhua
Xu, Yan
Shu, Chi-Wang [1 ]
机构
[1] Univ Sci & Technol China, Dept Math, Hefei 230026, Peoples R China
[2] Univ Twente, Dept Appl Math, NL-7500 AE Enschede, Netherlands
[3] Brown Univ, Div Appl Math, Providence, RI 02912 USA
基金
中国国家自然科学基金; 美国国家科学基金会;
关键词
Cahn-Hilliard equation; Cahn-Hilliard system; local discontinuous Galerkin methods; stability;
D O I
10.1016/j.jcp.2007.08.001
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this paper, we develop local discontinuous Galerkin (LDG) methods for the fourth order nonlinear Cahn-Hilliar equation and system. The energy stability of the LDG methods is proved for the general nonlinear case. Numerical examples for the Cahn-Hilliard equation and the Cahn-Hilliard system in one and two dimensions are presented and if numerical results illustrate the accuracy and capability of the methods. (C) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:472 / 491
页数:20
相关论文
共 37 条
[1]   Unified analysis of discontinuous Galerkin methods for elliptic problems [J].
Arnold, DN ;
Brezzi, F ;
Cockburn, B ;
Marini, LD .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2002, 39 (05) :1749-1779
[2]   Finite element approximation of a model for phase separation of a multi-component alloy with non-smooth free energy [J].
Barrett, JW ;
Blowey, JF .
NUMERISCHE MATHEMATIK, 1997, 77 (01) :1-34
[3]   Finite element approximation of the Cahn-Hilliard equation with degenerate mobility [J].
Barrett, JW ;
Blowey, JF ;
Garcke, H .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1999, 37 (01) :286-318
[4]   On fully practical finite element approximations of degenerate Cahn-Hilliard systems [J].
Barrett, JW ;
Blowey, JF ;
Garcke, H .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2001, 35 (04) :713-748
[5]   A high-order accurate discontinuous finite element method for the numerical solution of the compressible Navier-Stokes equations [J].
Bassi, F ;
Rebay, S .
JOURNAL OF COMPUTATIONAL PHYSICS, 1997, 131 (02) :267-279
[6]  
Blowey J. F., 1992, Euro. J. Appl. Math., V3, P147, DOI DOI 10.1017/S0956792500000759
[7]   Numerical analysis of a model for phase separation of a multi-component alloy [J].
Blowey, JF ;
Copetti, MIM ;
Elliott, CM .
IMA JOURNAL OF NUMERICAL ANALYSIS, 1996, 16 (01) :111-139
[8]   FREE ENERGY OF A NONUNIFORM SYSTEM .1. INTERFACIAL FREE ENERGY [J].
CAHN, JW ;
HILLIARD, JE .
JOURNAL OF CHEMICAL PHYSICS, 1958, 28 (02) :258-267
[9]   A discontinuous Galerkin method for the Cahn-Hilliard equation [J].
Choo S.M. ;
Lee Y.J. .
Journal of Applied Mathematics and Computing, 2005, 18 (1-2) :113-126
[10]   The local discontinuous Galerkin method for time-dependent convection-diffusion systems [J].
Cockburn, B ;
Shu, CW .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1998, 35 (06) :2440-2463