FastCount: A Fast Gene Count Software for Single-cell RNA-seq Data

被引:1
作者
Liu, Jinpeng [1 ]
Liu, Xinan [1 ]
Yu, Ye [1 ]
Wang, Chi [1 ]
Liu, Jinze [2 ]
机构
[1] Univ Kentucky, Lexington, KY 40506 USA
[2] Virginia Commonwealth Univ, Richmond, VA USA
来源
12TH ACM CONFERENCE ON BIOINFORMATICS, COMPUTATIONAL BIOLOGY, AND HEALTH INFORMATICS (ACM-BCB 2021) | 2021年
关键词
single cell RNA-seq; UMI quantification; alignment-free; k-mers; SEQUENCE;
D O I
10.1145/3459930.3469544
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Motivation: The advent of single cell RNA-seq (scRNA-seq) enables scientists to characterize the transcriptomic response of cells under different conditions and understand expression heterogeneity at single cell level. One of the fundamental steps in scRNA-seq analysis is to summarize raw sequencing reads into a list of gene counts for each individual cell. However, this step remains to be most time-consuming and resource intensive in the analysis workflow due to the large amount of data produced in a scRNA-seq experiment. It is further complicated by the special handling of cell barcodes and unique molecular identifiers (UMIs) information in the read sequences. For example, the gene count summarization of 10X Chromium sequencing by standard Cell Ranger count often takes many hours to finish when running on a computing cluster. Although several alignment-free algorithms have been developed to improve efficiency, their derived gene count suffer from poor concordance with Cell Ranger count and algorithm-specific bias[1]. Results: In this work, we present a light-weight k-mer based gene count algorithm, FastCount, to support efficient UMI counts from single cell RNA-seq data. We demonstrate that FastCount is over an order of magnitude faster than Cell Ranger count while achieving competitive accuracy on 10X Genomics single cell RNAseq data. FastCount is a stand-alone program implemented in C++.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Bubble: a fast single-cell RNA-seq imputation using an autoencoder constrained by bulk RNA-seq data
    Chen, Siqi
    Yan, Xuhua
    Zheng, Ruiqing
    Li, Min
    BRIEFINGS IN BIOINFORMATICS, 2023, 24 (01)
  • [2] SCRABBLE: single-cell RNA-seq imputation constrained by bulk RNA-seq data
    Peng, Tao
    Zhu, Qin
    Yin, Penghang
    Tan, Kai
    GENOME BIOLOGY, 2019, 20 (1)
  • [3] SCRABBLE: single-cell RNA-seq imputation constrained by bulk RNA-seq data
    Tao Peng
    Qin Zhu
    Penghang Yin
    Kai Tan
    Genome Biology, 20
  • [4] An Efficient and Flexible Method for Deconvoluting Bulk RNA-Seq Data with Single-Cell RNA-Seq Data
    Sun, Xifang
    Sun, Shiquan
    Yang, Sheng
    CELLS, 2019, 8 (10)
  • [5] Deep Learning for Clustering Single-cell RNA-seq Data
    Zhu, Yuan
    Bai, Litai
    Ning, Zilin
    Fu, Wenfei
    Liu, Jie
    Jiang, Linfeng
    Fei, Shihuang
    Gong, Shiyun
    Lu, Lulu
    Deng, Minghua
    Yi, Ming
    CURRENT BIOINFORMATICS, 2024, 19 (03) : 193 - 210
  • [6] Locality Sensitive Imputation for Single-Cell RNA-Seq Data
    Moussa, Marmar
    Mandoiu, Ion I.
    BIOINFORMATICS RESEARCH AND APPLICATIONS, ISBRA 2018, 2018, 10847 : 347 - 360
  • [7] Supervised Adversarial Alignment of Single-Cell RNA-seq Data
    Ge, Songwei
    Wang, Haohan
    Alavi, Amir
    Xing, Eric
    Bar-Joseph, Ziv
    JOURNAL OF COMPUTATIONAL BIOLOGY, 2021, 28 (05) : 501 - 513
  • [8] Identification of innate lymphoid cells in single-cell RNA-Seq data
    Madeleine Suffiotti
    Santiago J. Carmona
    Camilla Jandus
    David Gfeller
    Immunogenetics, 2017, 69 : 439 - 450
  • [9] Identification of innate lymphoid cells in single-cell RNA-Seq data
    Suffiotti, Madeleine
    Carmona, Santiago J.
    Jandus, Camilla
    Gfeller, David
    IMMUNOGENETICS, 2017, 69 (07) : 439 - 450
  • [10] Single-Cell RNA-Seq Technologies and Related Computational Data Analysis
    Chen, Geng
    Ning, Baitang
    Shi, Tieliu
    FRONTIERS IN GENETICS, 2019, 10