Meiotic interstrand DNA damage escapes paternal repair and causes chromosomal aberrations in the zygote by maternal misrepair

被引:51
作者
Marchetti, Francesco [1 ,2 ,3 ]
Bishop, Jack [4 ]
Gingerich, John [1 ]
Wyrobek, Andrew J. [2 ,3 ]
机构
[1] Hlth Canada, Environm Hlth Sci Res Bur, Ottawa, ON K1A 0K9, Canada
[2] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Life Sci, Berkeley, CA 94720 USA
[3] Lawrence Livermore Natl Lab, Dept Biosci, Livermore, CA 94550 USA
[4] NIEHS, Natl Toxicol Program, Res Triangle Pk, NC 27709 USA
关键词
TOPOISOMERASE-II; MOUSE ZYGOTES; MUTATIONS; MELPHALAN; ABNORMALITIES; CHROMATIN; CANCER; ASSAY;
D O I
10.1038/srep07689
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
De novo point mutations and chromosomal structural aberrations (CSA) detected in offspring of unaffected parents show a preferential paternal origin with higher risk for older fathers. Studies in rodents suggest that heritable mutations transmitted from the father can arise from either paternal or maternal misrepair of damaged paternal DNA, and that the entire spermatogenic cycle can be at risk after mutagenic exposure. Understanding the susceptibility and mechanisms of transmission of paternal mutations is important in family planning after chemotherapy and donor selection for assisted reproduction. We report that treatment of male mice with melphalan (MLP), a bifunctional alkylating agent widely used in chemotherapy, induces DNA lesions during male mouse meiosis that persist unrepaired as germ cells progress through DNA repair-competent phases of spermatogenic development. After fertilization, unrepaired sperm DNA lesions are mis-repaired into CSA by the egg's DNA repair machinery producing chromosomally abnormal offspring. These findings highlight the importance of both pre- and post-fertilization DNA repair in assuring the genomic integrity of the conceptus.
引用
收藏
页数:7
相关论文
共 53 条
[1]   DNA repair by oocytes [J].
Ashwood-Smith, M. J. ;
Edwards, R. G. .
MOLECULAR HUMAN REPRODUCTION, 1996, 2 (01) :46-51
[2]   DNA repair mechanisms and gametogenesis [J].
Baarends, WM ;
van der Laan, R ;
Grootegoed, JA .
REPRODUCTION, 2001, 121 (01) :31-39
[3]   DNA damage recognition in the rat zygote following chronic paternal cyclophosphamide exposure [J].
Barton, Tara S. ;
Robaire, Bernard ;
Hales, Barbara F. .
TOXICOLOGICAL SCIENCES, 2007, 100 (02) :495-503
[4]   Specificity and kinetics of interstrand and intrastrand bifunctional alkylation by nitrogen mustards at a G-G-C sequence [J].
Bauer, GB ;
Povirk, LF .
NUCLEIC ACIDS RESEARCH, 1997, 25 (06) :1211-1218
[5]  
Collett D., 1991, Modeling binary data
[6]   The origins patterns and implications of human spontaneous mutation [J].
Crow, JF .
NATURE REVIEWS GENETICS, 2000, 1 (01) :40-47
[7]   DNA interstrand crosslink repair and cancer [J].
Deans, Andrew J. ;
West, Stephen C. .
NATURE REVIEWS CANCER, 2011, 11 (07) :467-480
[8]   DNA double-strand break repair in parental chromatin of mouse zygotes, the first cell cycle as an origin of de novo mutation [J].
Derijck, Alwin ;
van der Heijden, Godfried ;
Giele, Maud ;
Philippens, Marielle ;
de Boer, Peter .
HUMAN MOLECULAR GENETICS, 2008, 17 (13) :1922-1937
[9]   γH2AX signalling during sperm chromatin remodelling in the mouse zygote [J].
Derijck, Alwin A. H. A. ;
van der Heijden, Godfried W. ;
Giele, Maud ;
Philippens, Marielle E. P. ;
van Bavel, Casandra C. A. W. ;
de Boer, Peter .
DNA REPAIR, 2006, 5 (08) :959-971
[10]   FLOW SORTING OF THE MOUSE CATTANACH X-CHROMOSOME, T (X-7) 1 CT, IN AN ACTIVE OR INACTIVE STATE [J].
DISTECHE, CM ;
CARRANO, AV ;
ASHWORTH, LK ;
BURKHARTSCHULTZ, K ;
LATT, SA .
CYTOGENETICS AND CELL GENETICS, 1981, 29 (04) :189-197