PERTURBATION ANALYSIS OF MATRICES OVER A QUATERNION DIVISION ALGEBRA

被引:5
作者
Ahmad, S. K. Safique [1 ]
Ali, Istkhar [2 ]
Slapnicar, Ivan [3 ]
机构
[1] Indian Inst Technol Indore, Dept Math, Khandwa Rd, Indore 453552, Madhya Pradesh, India
[2] Integral Univ, Dept Math & Stat, Kursi Rd, Lucknow 226026, Uttar Pradesh, India
[3] Univ Split, Fac Elect Engn Mech Engn & Naval Architecture, Rudjera Boskovica 32, Split 21000, Croatia
来源
ELECTRONIC TRANSACTIONS ON NUMERICAL ANALYSIS | 2021年 / 54卷
关键词
left eigenvalues; right eigenvalues; quaternionic polynomials; Bauer-Fike theorem; quaternionic companion matrices; quaternionic matrix norms; quaternionic matrices; POLYNOMIALS; ZEROS; BOUNDS; EIGENVALUES; ABSOLUTE;
D O I
10.1553/etna_vol54s128
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we present the concept of perturbation bounds for the right eigenvalues of a quaternionic matrix. In particular, a Bauer-Fike-type theorem for the right eigenvalues of a diagonalizable quaternionic matrix is derived. In addition, perturbations of a quaternionic matrix are discussed via a block-diagonal decomposition and the Jordan canonical form of a quaternionic matrix. The location of the standard right eigenvalues of a quaternionic matrix and a sufficient condition for the stability of a perturbed quaternionic matrix are given. As an application, perturbation bounds for the zeros of quaternionic polynomials are derived. Finally, we give numerical examples to illustrate our results.
引用
收藏
页码:128 / 149
页数:22
相关论文
共 33 条
[1]  
Adler SL., 1995, Quaternionic quantum mechanics and quantum fields
[2]   Localization Theorems for Matrices and Bounds for the Zeros of Polynomials over Quaternion Division Algebra [J].
Ahmad, Sk Safique ;
Ali, Istkhar .
FILOMAT, 2018, 32 (02) :553-573
[3]   Bounds for Eigenvalues of Matrix Polynomials Over Quaternion Division Algebra [J].
Ahmad, Sk. Safique ;
Ali, Istkhar .
ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2016, 26 (04) :1095-1125
[4]  
Bauer F. L., 1960, NUMER MATH, P137, DOI [10.1007/BF01386217, DOI 10.1007/BF01386217]
[5]   Perturbation of eigenvalues for matrix polynomials via the Bauer-Fike theorems [J].
Chu, EKW .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2003, 25 (02) :551-573
[6]   GENERALIZATION OF THE BAUER-FIKE THEOREM [J].
CHU, KWE .
NUMERISCHE MATHEMATIK, 1986, 49 (06) :685-691
[7]  
De Leo S, 2006, ELECTRON J LINEAR AL, V15, P297
[8]   Three absolute perturbation bounds for matrix eigenvalues imply relative bounds [J].
Eisenstat, SC ;
Ipsen, ICF .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 1998, 20 (01) :149-158
[9]   The spectral theorem in quaternions [J].
Farenick, DR ;
Pidkowich, BAF .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2003, 371 :75-102
[10]   Perturbation bounds for polynomials [J].
Galantai, A. ;
Hegedus, C. J. .
NUMERISCHE MATHEMATIK, 2008, 109 (01) :77-100