Flexible entanglement-distribution network with an AlGaAs chip for secure communications

被引:62
作者
Appas, Felicien [1 ]
Baboux, Florent [1 ]
Amanti, Maria I. [1 ]
Lemaitre, Aristide [2 ]
Boitier, Fabien [3 ]
Diamanti, Eleni [4 ]
Ducci, Sara [1 ]
机构
[1] Univ Paris, Lab Mat & Phenomenes Quant, Paris, France
[2] Univ Paris Saclay, CNRS, Palaiseau, France
[3] Nokia Bell Labs, Nozay, France
[4] Sorbonne Univ, CNRS, Paris, France
关键词
QUANTUM COMMUNICATION;
D O I
10.1038/s41534-021-00454-7
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Quantum communication networks enable applications ranging from highly secure communication to clock synchronization and distributed quantum computing. Miniaturized, flexible, and cost-efficient resources will be key elements for ensuring the scalability of such networks as they progress towards large-scale deployed infrastructures. Here, we bring these elements together by combining an on-chip, telecom-wavelength, broadband entangled photon source with industry-grade flexible-grid wavelength division multiplexing techniques, to demonstrate reconfigurable entanglement distribution between up to 8 users in a resource-optimized quantum network topology. As a benchmark application we use quantum key distribution, and show low error and high secret key generation rates across several frequency channels, over both symmetric and asymmetric metropolitan-distance optical fibered links and including finite-size effects. By adapting the bandwidth allocation to specific network constraints, we also illustrate the flexible networking capability of our configuration. Together with the potential of our semiconductor source for distributing secret keys over a 60 nm bandwidth with commercial multiplexing technology, these results offer a promising route to the deployment of scalable quantum network architectures.
引用
收藏
页数:10
相关论文
共 34 条
[1]   Entanglement distribution over 150 km in wavelength division multiplexed channels for quantum cryptography [J].
Aktas, Djeylan ;
Fedrici, Bruno ;
Kaiser, Florian ;
Lunghi, Tommaso ;
Labonte, Laurent ;
Tanzilli, Sebastien .
LASER & PHOTONICS REVIEWS, 2016, 10 (03) :451-457
[2]   Multi-user quantum key distribution with entangled photons from an AlGaAs chip [J].
Autebert, C. ;
Trapateau, J. ;
Orieux, A. ;
Lemaitre, A. ;
Gomez-Carbonell, C. ;
Diamanti, E. ;
Zaquine, I. ;
Ducci, S. .
QUANTUM SCIENCE AND TECHNOLOGY, 2016, 1 (01)
[3]   Generalized privacy amplification [J].
Bennett, CH ;
Brassard, G ;
Crepeau, C ;
Maurer, UM .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1995, 41 (06) :1915-1923
[4]   QUANTUM CRYPTOGRAPHY WITHOUT BELL THEOREM [J].
BENNETT, CH ;
BRASSARD, G ;
MERMIN, ND .
PHYSICAL REVIEW LETTERS, 1992, 68 (05) :557-559
[5]   Observation of entanglement between a single trapped atom and a single photon [J].
Blinov, BB ;
Moehring, DL ;
Duan, LM ;
Monroe, C .
NATURE, 2004, 428 (6979) :153-157
[6]   Electrically Injected Photon-Pair Source at Room Temperature [J].
Boitier, Fabien ;
Orieux, Adeline ;
Autebert, Claire ;
Lemaitre, Aristide ;
Galopin, Elisabeth ;
Manquest, Christophe ;
Sirtori, Carlo ;
Favero, Ivan ;
Leo, Giuseppe ;
Ducci, Sara .
PHYSICAL REVIEW LETTERS, 2014, 112 (18)
[7]  
Brassard G., 1994, PROC EUROCRYPT, V765, P410
[8]   Experimental realization of an entanglement access network and secure multi-party computation [J].
Chang, X. -Y. ;
Deng, D. -L. ;
Yuan, X. -X. ;
Hou, P. -Y. ;
Huang, Y. -Y. ;
Duan, L. -M. .
SCIENTIFIC REPORTS, 2016, 6
[9]   Optimizing the spectro-temporal properties of photon pairs from Bragg-reflection waveguides [J].
Chen, H. ;
Laiho, K. ;
Pressl, B. ;
Schlager, A. ;
Suchomel, H. ;
Kamp, M. ;
Hoefling, S. ;
Schneider, C. ;
Weihs, G. .
JOURNAL OF OPTICS, 2019, 21 (05)
[10]   A step closer to secure global communication [J].
Diamanti, Eleni .
NATURE, 2020, 582 (7813) :494-495