Cavity optomechanical sensing

被引:141
|
作者
Li, Bei-Bei [1 ,2 ]
Ou, Lingfeng [5 ]
Lei, Yuechen [1 ,6 ]
Liu, Yong-Chun [3 ,4 ]
机构
[1] Chinese Acad Sci, Inst Phys, Beijing Natl Lab Condensed Matter Phys, Beijing 100094, Peoples R China
[2] Songshan Lake Mat Lab, Dongguan 523808, Guangdong, Peoples R China
[3] Tsinghua Univ, Dept Phys, State Key Lab Low Dimens Quantum Phys, Beijing 100084, Peoples R China
[4] Frontier Sci Ctr Quantum Informat, Beijing 100084, Peoples R China
[5] Tsinghua Univ, State Key Lab Low Dimens Quantum Phys, Beijing 100084, Peoples R China
[6] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
基金
中国国家自然科学基金;
关键词
cavity optomechanics; microresonators; on-chip photonic devices; precision sensing; squeezed light; QUANTUM-NOISE REDUCTION; RADIATION-PRESSURE; SQUEEZED STATES; MECHANICAL OSCILLATOR; NANOMECHANICAL MOTION; DISSIPATIVE FEEDBACK; OPTIMAL RESOLUTION; MASS SENSOR; FORCE; DISPLACEMENT;
D O I
10.1515/nanoph-2021-0256
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Cavity optomechanical systems enable interactions between light and mechanical resonators, providing a platform both for fundamental physics of macroscopic quantum systems and for practical applications of precision sensing. The resonant enhancement of both mechanical and optical response in the cavity optomechanical systems has enabled precision sensing of multiple physical quantities, including displacements, masses, forces, accelerations, magnetic fields, and ultrasounds. In this article, we review the progress of precision sensing applications using cavity optomechanical systems. The review is organized in the following way: first we will introduce the physical principles of optomechanical sensing, including a discussion of the noises and sensitivity of the systems, and then review the progress in displacement sensing, mass sensing, force sensing, atomic force microscope (AFM) and magnetic resonance force microscope (MRFM), accelerometry, magnetometry, and ultrasound sensing, and introduce the progress of using quantum techniques especially squeezed light to enhance the performance of the optomechanical sensors. Finally, we give a summary and outlook.
引用
收藏
页码:2799 / 2832
页数:34
相关论文
共 50 条
  • [41] Ultrabroadband and sensitive cavity optomechanical magnetometry
    BEIBEI LI
    GEORGE BRAWLEY
    HAMISH GREENALL
    STEFAN FORSTNER
    EOIN SHERIDAN
    HALINA RUBINSZTEINDUNLOP
    WARWICK PBOWEN
    Photonics Research, 2020, 8 (07) : 1064 - 1071
  • [42] Sensitivity of cavity optomechanical field sensors
    Knittel, J.
    Forstner, S.
    Swaim, J. D.
    Rubinsztein-Dunlop, H.
    Bowen, W. P.
    THIRD ASIA PACIFIC OPTICAL SENSORS CONFERENCE, 2012, 8351
  • [43] Quantum measurement with cavity optomechanical systems
    Chen Xue
    Liu Xiao-Wei
    Zhang Ke-Ye
    Yuan Chun-Hua
    Zhang Wei-Ping
    ACTA PHYSICA SINICA, 2015, 64 (16)
  • [44] Dynamics of a Coupled Atom and Optomechanical Cavity
    Wang, W.
    Wang, L. C.
    Sun, H. Y.
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2010, 57 (04) : 704 - 709
  • [46] Polariton multistability in a nonlinear optomechanical cavity
    Bhatt, Vijay
    Yadav, Surabhi
    Jha, Pradip K.
    Bhattacherjee, Aranya B.
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2021, 33 (36)
  • [47] Cavity-optomechanical quantum battery
    Wang, Lu
    Liu, Shu-Qian
    Wu, Feng-lin
    Fan, Hao
    Liu, Si-Yuan
    PHYSICAL REVIEW A, 2024, 110 (06)
  • [48] On-chip cavity optomechanical coupling
    Hauer, Bradley D.
    Kim, Paul H.
    Doolin, Callum
    MacDonald, Allison J. R.
    Ramp, Hugh
    Davis, John P.
    EPJ TECHNIQUES AND INSTRUMENTATION, 2014, 1 (01):
  • [49] Tuning Fork Cavity Optomechanical Transducers
    Liu, Yuxiang
    Davanco, Marcelo
    Ti, Chaoyang
    Aksyuk, Vladimir
    Srinivasan, Kartik
    2014 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2014,
  • [50] SILICON NITRIDE CAVITY OPTOMECHANICAL TRANSDUCERS
    Davanco, Marcelo
    Grutter, Karen E.
    Liu, Yuxiang
    Aksyuk, Vladimir
    Srinivasan, Kartik
    2014 INTERNATIONAL CONFERENCE ON OPTICAL MEMS AND NANOPHOTONICS (OMN), 2014, : 29 - 30