Identifying suboxide grains at the metal-oxide interface of a corroded Zr-1.0%Nb alloy using (S)TEM, transmission-EBSD and EELS

被引:68
作者
Hu, Jing [1 ]
Garner, Alistair [2 ]
Ni, Na [3 ]
Gholinia, Ali [2 ]
Nicholls, Rebecca J. [1 ]
Lozano-Perez, Sergio [1 ]
Frankel, Philipp [2 ]
Preuss, Michael [2 ]
Grovenor, Chris R. M. [1 ]
机构
[1] Univ Oxford, Dept Mat, Oxford OX1 3PH, England
[2] Univ Manchester, Sch Mat, Mat Performance Ctr, Manchester, Lancs, England
[3] Univ London Imperial Coll Sci Technol & Med, Dept Mat, Royal Sch Mines, London, England
基金
英国工程与自然科学研究理事会;
关键词
Zirconium alloys; (S)TEM; Transmission-EBSD; Transmission Kikuchi Diffraction; EELS; Suboxide; Oxidation mechanism; METAL/OXIDE INTERFACE; ELECTRON-MICROSCOPY; ZIRCONIUM; OXIDATION; DIFFRACTION; ZIRCALOY-2; AUTOCLAVE; CORROSION;
D O I
10.1016/j.micron.2014.10.004
中图分类号
TH742 [显微镜];
学科分类号
摘要
Here we report a methodology combining TEM, STEM, Transmission-EBSD and EELS to analyse the structural and chemical properties of the metal-oxide interface of corroded Zr alloys in unprecedented detail. TEM, STEM and diffraction results revealed the complexity of the distribution of suboxide grains at the metal-oxide interface. EELS provided accurate quantitative analysis of the oxygen concentration across the interface, identifying the existence of local regions of stoichiometric ZrO and Zr3O2 with varying thickness. Transmission-EBSD confirmed that the suboxide grains can be indexed with the hexagonal ZrO structure predicted with ab initio by Nicholls et al. (2014). The t-EBSD analysis has also allowed for the mapping of a relatively large region of the metal-oxide interface, revealing the location and size distribution of the suboxide grains. (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:35 / 42
页数:8
相关论文
共 19 条
[1]   Examination of the chemical composition of irradiated zirconium based fuel claddings at the metal/oxide interface by TEM [J].
Abolhassani, S. ;
Bart, G. ;
Jakob, A. .
JOURNAL OF NUCLEAR MATERIALS, 2010, 399 (01) :1-12
[3]  
Cox B., 1998, 684 IAEA TECDOC
[4]   The microstructure and microtexture of zirconium oxide films studied by transmission electron backscatter diffraction and automated crystal orientation mapping with transmission electron microscopy [J].
Garner, A. ;
Gholinia, A. ;
Frankel, P. ;
Gass, M. ;
MacLaren, I. ;
Preuss, M. .
ACTA MATERIALIA, 2014, 80 :159-171
[5]  
Garzarolli F., 2012, CORROSION HYDRIDING
[6]  
Hillner E., 1977, 3 INT S ZIRCONIUM NU, P211, DOI [10.1520/STP35573S, DOI 10.1520/STP35573S]
[7]  
HULL AW, 1921, PHYS REV, V0018
[8]   How the crystallography and nanoscale chemistry of the metal/oxide interface develops during the aqueous oxidation of zirconium cladding alloys [J].
Ni, N. ;
Hudson, D. ;
Wei, J. ;
Wang, P. ;
Lozano-Perez, S. ;
Smith, G. D. W. ;
Sykes, J. M. ;
Yardley, S. S. ;
Moore, K. L. ;
Lyon, S. ;
Cottis, R. ;
Preuss, M. ;
Grovenor, C. R. M. .
ACTA MATERIALIA, 2012, 60 (20) :7132-7149
[9]   Quantitative EELS analysis of zirconium alloy metal/oxide interfaces [J].
Ni, Na ;
Lozano-Perez, Sergio ;
Sykes, John ;
Grovenor, Chris .
ULTRAMICROSCOPY, 2011, 111 (02) :123-130
[10]  
Nicholls R.J., 2014, ADV ENG MAT