Computational pharmaceutics-A new paradigm of drug delivery

被引:95
作者
Wang, Wei [1 ]
Ye, Zhuyifan [1 ]
Gao, Hanlu [1 ]
Ouyang, Defang [1 ]
机构
[1] Univ Macau, State Key Lab Qual Res Chinese Med, Inst Chinese Med Sci ICMS, Macau, Peoples R China
关键词
Computational pharmaceutics; Artificial intelligence; Machine learning; Molecular modeling; Process simulation; Mathematical modeling; PBPK modeling; PROCESS ANALYTICAL TECHNOLOGY; IN-VIVO; MATHEMATICAL-MODEL; FLUID-DYNAMICS; NEURAL-NETWORK; ARTIFICIAL-INTELLIGENCE; HISTORICAL-PERSPECTIVE; ACCURATELY PREDICTS; INCLUSION COMPLEXES; PRODUCT FORMULATION;
D O I
10.1016/j.jconrel.2021.08.030
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
In recent decades pharmaceutics and drug delivery have become increasingly critical in the pharmaceutical industry due to longer time, higher cost, and less productivity of new molecular entities (NMEs). However, current formulation development still relies on traditional trial-and-error experiments, which are timeconsuming, costly, and unpredictable. With the exponential growth of computing capability and algorithms, in recent ten years, a new discipline named "computational pharmaceutics" integrates with big data, artificial intelligence, and multi-scale modeling techniques into pharmaceutics, which offered great potential to shift the paradigm of drug delivery. Computational pharmaceutics can provide multi-scale lenses to pharmaceutical scientists, revealing physical, chemical, mathematical, and data-driven details ranging across pre-formulation studies, formulation screening, in vivo prediction in the human body, and precision medicine in the clinic. The present paper provides a comprehensive and detailed review in all areas of computational pharmaceutics and "Pharma 4.0", including artificial intelligence and machine learning algorithms, molecular modeling, mathematical modeling, process simulation, and physiologically based pharmacokinetic (PBPK) modeling. We not only summarized the theories and progress of these technologies but also discussed the regulatory requirements, current challenges, and future perspectives in the area, such as talent training and a culture change in the future pharmaceutical industry.
引用
收藏
页码:119 / 136
页数:18
相关论文
共 200 条
[1]   Molecular Dynamics Simulations of a Characteristic DPC Micelle in Water [J].
Abel, Stephane ;
Dupradeau, Francois-Yves ;
Marchi, Massimo .
JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2012, 8 (11) :4610-4623
[2]   Guiding Lead Optimization for Solubility Improvement with Physics-Based Modeling [J].
Abramov, Yuriy A. ;
Sun, Guangxu ;
Zeng, Qiao ;
Zeng, Qun ;
Yang, Mingjun .
MOLECULAR PHARMACEUTICS, 2020, 17 (02) :666-673
[3]   NanoSolveIT Project: Driving nanoinformatics research to develop innovative and integrated tools for in silico nanosafety assessment [J].
Afantitis, Antreas ;
Melagraki, Georgia ;
Isigonis, Panagiotis ;
Tsoumanis, Andreas ;
Varsou, Dimitra Danai ;
Valsami-Jones, Eugenia ;
Papadiamantis, Anastasios ;
Ellis, Laura-Jayne A. ;
Sarimveis, Haralambos ;
Doganis, Philip ;
Karatzas, Pantelis ;
Tsiros, Periklis ;
Liampa, Irene ;
Lobaskin, Vladimir ;
Greco, Dario ;
Serra, Angela ;
Kinaret, Pia Anneli Sofia ;
Saarimaki, Laura Aliisa ;
Grafstrom, Roland ;
Kohonen, Pekka ;
Nymark, Penny ;
Willighagen, Egon ;
Puzyn, Tomasz ;
Rybinska-Fryca, Anna ;
Lyubartsev, Alexander ;
Jensen, Keld Alstrup ;
Brandenburg, Jan Gerit ;
Lofts, Stephen ;
Svendsen, Claus ;
Harrison, Samuel ;
Maier, Dieter ;
Tamm, Kaido ;
Janes, Jaak ;
Sikk, Lauri ;
Dusinska, Maria ;
Longhin, Eleonora ;
Runden-Pran, Elise ;
Mariussen, Espen ;
El Yamani, Naouale ;
Unger, Wolfgang ;
Radnik, Joerg ;
Tropsha, Alexander ;
Cohen, Yoram ;
Leszczynski, Jerzy ;
Hendren, Christine Ogilvie ;
Wiesner, Mark ;
Winkler, David ;
Suzuki, Noriyuki ;
Yoon, Tae Hyun ;
Choi, Jang-Sik .
COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL, 2020, 18 :583-602
[4]   Computational Analysis of Fluid Dynamics in Pharmaceutical Freeze-Drying [J].
Alexeenko, Alina A. ;
Ganguly, Arnab ;
Nail, Steven L. .
JOURNAL OF PHARMACEUTICAL SCIENCES, 2009, 98 (09) :3483-3494
[5]   Molecular Simulation of the Separation of Isoleucine Enantiomers by β-Cyclodextrin [J].
Alvira, Elena .
MOLECULES, 2019, 24 (06)
[6]   Influence of solvent polarity on the separation of leucine enantiomers by β-cyclodextrin: a molecular mechanics and dynamics simulation [J].
Alvira, Elena .
TETRAHEDRON-ASYMMETRY, 2017, 28 (10) :1414-1422
[7]   A Practical Guide to Surface Kinetic Monte Carlo Simulations [J].
Andersen, Mie ;
Panosetti, Chiara ;
Reuter, Karsten .
FRONTIERS IN CHEMISTRY, 2019, 7
[8]  
[Anonymous], 2016, NAT METHODS, DOI DOI 10.1038/nmeth.3707
[9]  
[Anonymous], 2016, PHARM DISC DEV MAN F, P83
[10]  
[Anonymous], 1946, NEW YORK TIMES MAGAZ, P7