Modeling Nanocarrier Transport across a 3D In Vitro Human Blood-Brain-Barrier Microvasculature

被引:79
作者
Lee, Sharon Wei Ling [1 ,2 ,3 ]
Campisi, Marco [4 ]
Osaki, Tatsuya [5 ,6 ]
Possenti, Luca [7 ]
Mattu, Clara [4 ]
Adriani, Giulia [3 ,8 ]
Kamm, Roger Dale [6 ,9 ]
Chiono, Valeria [4 ]
机构
[1] Singapore MIT Alliance Res & Technol Smart BioSys, 1 Create Way,04-13-14, Singapore 138602, Singapore
[2] Natl Univ Singapore, Yong Loo Lin Sch Med, Dept Microbiol & Immunol, 5 Sci Dr 2, Singapore 117545, Singapore
[3] ASTAR, Singapore Immunol Network SIgN, 8A Biomed Grove,Immunos Bldg, Singapore 138648, Singapore
[4] Politecn Torino, Dept Mech & Aerosp Engn, Corso Duca Abruzzi 24, I-10129 Turin, Italy
[5] Univ Tokyo, Inst Ind Sci, Meguro Ku, Fe412,Komaba 4-6-1, Tokyo 1538505, Japan
[6] MIT, Dept Mech Engn, 500 Technol Sq,MIT Bldg,Room NE47-321, Cambridge, MA 02139 USA
[7] Politecn Milan, Dept Chem Mat & Chem Engn Giulio Natta CMIC, Piazza Leonardo Da Vinci 32, I-20133 Milan, Italy
[8] Natl Univ Singapore, Fac Engn, Dept Biomed Engn, 4 Engn Dr 3, Singapore 117583, Singapore
[9] MIT, Dept Biol Engn, SOO Technol Sq,MIT Bldg,Room NE47-321, Cambridge, MA 02139 USA
基金
新加坡国家研究基金会; 美国国家科学基金会;
关键词
human blood-brain-barrier; in vitro testing platforms; microfluidic devices; polymer nanoparticles; self-organized microvasculatures; DRUG-DELIVERY; ENDOTHELIAL-CELLS; PROTEIN CORONA; NANOPARTICLES; TRANSFERRIN; ACTIVATION; INTERFACE; PERICYTES; DESIGN; SYSTEM;
D O I
10.1002/adhm.201901486
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Polymer nanoparticles (NPs), due to their small size and surface functionalization potential have demonstrated effective drug transport across the blood-brain-barrier (BBB). Currently, the lack of in vitro BBB models that closely recapitulate complex human brain microenvironments contributes to high failure rates of neuropharmaceutical clinical trials. In this work, a previously established microfluidic 3D in vitro human BBB model, formed by the self-assembly of human-induced pluripotent stem cell-derived endothelial cells, primary brain pericytes, and astrocytes in triculture within a 3D fibrin hydrogel is exploited to quantify polymer NP permeability, as a function of size and surface chemistry. Microvasculature are perfused with commercially available 100-400 nm fluorescent polystyrene (PS) NPs, and newly synthesized 100 nm rhodamine-labeled polyurethane (PU) NPs. Confocal images are taken at different timepoints and computationally analyzed to quantify fluorescence intensity inside/outside the microvasculature, to determine NP spatial distribution and permeability in 3D. Results show similar permeability of PS and PU NPs, which increases after surface-functionalization with brain-associated ligand holo-transferrin. Compared to conventional transwell models, the method enables rapid analysis of NP permeability in a physiologically relevant human BBB set-up. Therefore, this work demonstrates a new methodology to preclinically assess NP ability to cross the human BBB.
引用
收藏
页数:12
相关论文
共 50 条
[41]   EFFECT OF HYPEROSMOTIC BLOOD-BRAIN-BARRIER DISRUPTION ON TRANSCAPILLARY TRANSPORT IN CANINE BRAIN-TUMORS [J].
GROOTHUIS, DR ;
WARKNE, PC ;
MOLNAR, P ;
LAPIN, GD ;
MIKHAEL, MA .
JOURNAL OF NEUROSURGERY, 1990, 72 (03) :441-449
[42]   Transferrin Functionalized Liposomes Loading Dopamine HCl: Development and Permeability Studies across an In Vitro Model of Human Blood-Brain Barrier [J].
Lopalco, Antonio ;
Cutrignelli, Annalisa ;
Denora, Nunzio ;
Lopedota, Angela ;
Franco, Massimo ;
Laquintana, Valentino .
NANOMATERIALS, 2018, 8 (03)
[43]   Engineering an in vitro air-blood barrier by 3D bioprinting [J].
Horvath, Lenke ;
Umehara, Yuki ;
Jud, Corinne ;
Blank, Fabian ;
Petri-Fink, Alke ;
Rothen-Rutishauser, Barbara .
SCIENTIFIC REPORTS, 2015, 5
[44]   Transport across the Blood-Brain Barrier of Pluronic Leptin [J].
Price, Tulin O. ;
Farr, Susan A. ;
Yi, Xiang ;
Vinogradov, Serguei ;
Batrakova, Elena ;
Banks, William A. ;
Kabanov, Alexander V. .
JOURNAL OF PHARMACOLOGY AND EXPERIMENTAL THERAPEUTICS, 2010, 333 (01) :253-263
[45]   Targeting Human Endothelial Cells with Glutathione and Alanine Increases the Crossing of a Polypeptide Nanocarrier through a Blood-Brain Barrier Model and Entry to Human Brain Organoids [J].
Meszaros, Maria ;
Phan, Thi Ha My ;
Vigh, Judit P. ;
Porkolab, Gergo ;
Kocsis, Anna ;
Pali, Emese K. ;
Polgar, Tamas F. ;
Walter, Fruzsina R. ;
Bolognin, Silvia ;
Schwamborn, Jens C. ;
Jan, Jeng-Shiung ;
Deli, Maria A. ;
Veszelka, Szilvia .
CELLS, 2023, 12 (03)
[46]   A Hybrid Nanofiber/Paper Cell Culture Platform for Building a 3D Blood-Brain Barrier Model [J].
Huang, Kaixiang ;
Castiaux, Andre D. ;
Podicheti, Ram ;
Rusch, Douglas B. ;
Martin, R. Scott ;
Baker, Lane A. .
SMALL METHODS, 2021, 5 (09)
[47]   Transport of prion protein across the blood-brain barrier [J].
Banks, W. A. ;
Robinson, Sandra M. ;
Diaz-Espinoza, R. ;
Urayama, A. ;
Soto, C. .
EXPERIMENTAL NEUROLOGY, 2009, 218 (01) :162-167
[48]   Transport of Amino Acids Across the Blood-Brain Barrier [J].
Zaragoza, Rosa .
FRONTIERS IN PHYSIOLOGY, 2020, 11
[49]   Intracellular transport and regulation of transcytosis across the blood–brain barrier [J].
Roberto Villaseñor ;
Josephine Lampe ;
Markus Schwaninger ;
Ludovic Collin .
Cellular and Molecular Life Sciences, 2019, 76 :1081-1092
[50]   Blood-brain-barrier modeling with tissue chips for research applications in space and on Earth [J].
Yau, Anne ;
Jogdand, Aditi ;
Chen, Yupeng .
FRONTIERS IN SPACE TECHNOLOGIES, 2023, 4