Thymus Functionality Needs More Than a Few TECs

被引:18
作者
Bhalla, Pratibha [1 ]
Su, Dong-Ming [2 ]
van Oers, Nicolai S. C. [1 ,3 ,4 ]
机构
[1] Univ Texas Southwestern Med Ctr, Dept Immunol, Dallas, TX 75390 USA
[2] Univ North Texas Hlth Sci Ctr, Dept Microbiol,Immunol & Genet, Ft Worth, TX USA
[3] Univ Texas Southwestern Med Ctr, Dept Microbiol, Dallas, TX 75390 USA
[4] Univ Texas Southwestern Med Ctr, Dept Pediat, Dallas, TX 75390 USA
基金
美国国家卫生研究院;
关键词
thymus; FOXN1; thymus epithelial cells; mesenchymal cells; endothelial cells; T cell development; thymus regeneration; thymus organoid technologies; T-CELL DEVELOPMENT; HEMATOPOIETIC PROGENITOR CELLS; LEUKEMIA INHIBITORY FACTOR; DELTA-LIKE; 4; EPITHELIAL-CELLS; GROWTH-FACTOR; PERIVASCULAR SPACE; NEGATIVE SELECTION; MESENCHYMAL CELLS; PRECURSOR CELLS;
D O I
10.3389/fimmu.2022.864777
中图分类号
R392 [医学免疫学]; Q939.91 [免疫学];
学科分类号
100102 ;
摘要
The thymus, a primary lymphoid organ, produces the T cells of the immune system. Originating from the 3(rd) pharyngeal pouch during embryogenesis, this organ functions throughout life. Yet, thymopoiesis can be transiently or permanently damaged contingent on the types of systemic stresses encountered. The thymus also undergoes a functional decline during aging, resulting in a progressive reduction in naive T cell output. This atrophy is evidenced by a deteriorating thymic microenvironment, including, but not limited, epithelial-to-mesenchymal transitions, fibrosis and adipogenesis. An exploration of cellular changes in the thymus at various stages of life, including mouse models of in-born errors of immunity and with single cell RNA sequencing, is revealing an expanding number of distinct cell types influencing thymus functions. The thymus microenvironment, established through interactions between immature and mature thymocytes with thymus epithelial cells (TEC), is well known. Less well appreciated are the contributions of neural crest cell-derived mesenchymal cells, endothelial cells, diverse hematopoietic cell populations, adipocytes, and fibroblasts in the thymic microenvironment. In the current review, we will explore the contributions of the many stromal cell types participating in the formation, expansion, and contraction of the thymus under normal and pathophysiological processes. Such information will better inform approaches for restoring thymus functionality, including thymus organoid technologies, beneficial when an individuals' own tissue is congenitally, clinically, or accidentally rendered non-functional.
引用
收藏
页数:14
相关论文
共 189 条
[1]   Thymic Epithelial Cells [J].
Abramson, Jakub ;
Anderson, Graham .
ANNUAL REVIEW OF IMMUNOLOGY, VOL 35, 2017, 35 :85-118
[2]   Thyroid Cancer Risk 40+ Years after Irradiation for an Enlarged Thymus: An Update of the Hempelmann Cohort [J].
Adams, Jacob ;
Shore, Roy E. ;
Dozier, Ann ;
Lipshultz, Steven E. ;
Schwartz, Ronald G. ;
Constine, Louis S. ;
Pearson, Thomas A. ;
Stovall, Marilyn ;
Thevenet-Morrison, Kelly ;
Fisher, Susan G. .
RADIATION RESEARCH, 2010, 174 (06) :753-762
[3]   The tumor necrosis factor family receptors RANK and CD40 cooperatively establish the thymic medullary microenvironment and self-tolerance [J].
Akiyama, Taishin ;
Shimo, Yusuke ;
Yanai, Hiromi ;
Qin, Junwen ;
Ohshima, Daisuke ;
Maruyama, Yuya ;
Asaumi, Yukiko ;
Kitazawa, Juli ;
Takayanagi, Hiroshi ;
Penninger, Josef M. ;
Matsumoto, Mitsuru ;
Nitta, Takeshi ;
Takahama, Yousuke ;
Inoue, Jun-ichiro .
IMMUNITY, 2008, 29 (03) :423-437
[4]   Generation and Regeneration of Thymic Epithelial Cells [J].
Alawam, Abdullah S. ;
Anderson, Graham ;
Lucas, Beth .
FRONTIERS IN IMMUNOLOGY, 2020, 11
[5]   Thymic epithelial cells: antigen presenting cells that regulate T cell repertoire and tolerance development [J].
Alexandropoulos, Konstantina ;
Danzl, Nichole M. .
IMMUNOLOGIC RESEARCH, 2012, 54 (1-3) :177-190
[6]   Novel mutations in the gene HOXC13 underlying pure hair and nail ectodermal dysplasia in consanguineous families [J].
Ali, R. H. ;
Habib, R. ;
Ud-Din, N. ;
Khan, M. N. ;
Ansar, M. ;
Ahmad, W. .
BRITISH JOURNAL OF DERMATOLOGY, 2013, 169 (02) :478-480
[7]   Characterization of the thymic IL-7 niche in vivo [J].
Alves, Nuno L. ;
Goff, Odile Richard-Le ;
Huntington, Nicholas D. ;
Sousa, Ana Patricia ;
Ribeiro, Vera S. G. ;
Bordack, Allison ;
Vives, Francina Langa ;
Peduto, Lucie ;
Chidgey, Ann ;
Cumano, Ana ;
Boyd, Richard ;
Eberl, Gerard ;
Di Santo, James P. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2009, 106 (05) :1512-1517
[8]   Efficacy and safety of CDX-301, recombinant human Flt3L, at expanding dendritic cells and hematopoietic stem cells in healthy human volunteers [J].
Anandasabapathy, N. ;
Breton, G. ;
Hurley, A. ;
Caskey, M. ;
Trumpfheller, C. ;
Sarma, P. ;
Pring, J. ;
Pack, M. ;
Buckley, N. ;
Matei, I. ;
Lyden, D. ;
Green, J. ;
Hawthorne, T. ;
Marsh, H. C. ;
Yellin, M. ;
Davis, T. ;
Keler, T. ;
Schlesinger, S. J. .
BONE MARROW TRANSPLANTATION, 2015, 50 (07) :924-930
[9]   The Importance of Dendritic Cells in Maintaining Immune Tolerance [J].
Audiger, Cindy ;
Rahman, M. Jubayer ;
Yun, Tae Jin ;
Tarbell, Kristin V. ;
Lesage, Sylvie .
JOURNAL OF IMMUNOLOGY, 2017, 198 (06) :2223-2231
[10]   MORPHOGENETIC INTERACTIONS IN THE DEVELOPMENT OF THE MOUSE THYMUS GLAND [J].
AUERBACH, R .
DEVELOPMENTAL BIOLOGY, 1960, 2 (03) :271-284