A clinical application of ensemble ICA to the quantification of myocardial blood flow in dynamic H152OPET

被引:0
作者
Lee, Byeong Il [1 ]
Lee, Jae Sung
Lee, Dong Soo
Kang, Won Jun
Lee, Jong Jin
Choi, Seungjin
机构
[1] Seoul Natl Univ, Coll Med, Dept Nucl Med, Seoul, South Korea
[2] Pohang Univ Sci & Technol, Dept Comp Sci, Pohang 790784, South Korea
来源
JOURNAL OF VLSI SIGNAL PROCESSING SYSTEMS FOR SIGNAL IMAGE AND VIDEO TECHNOLOGY | 2007年 / 49卷 / 02期
关键词
Bayesian learning; independent component analysis (ICA); myocardial blood flow quantification; positron emission tomography (PET);
D O I
10.1007/s11265-007-0080-7
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Ensemble independent component analysis (ICA) is a Bayesian multivariate data analysis method which allows various prior distributions for parameters and latent variables, leading to flexible data fitting. In this paper we apply ensemble ICA with a rectified Gaussian prior to dynamic (H15O)-O-2 positron emission tomography ( PET) image data, emphasizing its clinical usefulness by showing that major cardiac components are successfully extracted in an unsupervised manner and myocardial blood flow can be estimated in 15 among 20 patients. Detailed experiments and results are illustrated.
引用
收藏
页码:233 / 241
页数:9
相关论文
共 18 条
[11]  
LEE BI, 2005, PO INT C ART NEUR NE, P709
[12]   Learning the parts of objects by non-negative matrix factorization [J].
Lee, DD ;
Seung, HS .
NATURE, 1999, 401 (6755) :788-791
[13]  
LEE DS, 1995, KOREAN J NUCL MED, V29, P31
[14]  
Lee J.S., 2001, P 3 INT C INDEPENDEN, P629
[15]   Development and applications of a software for Functional Image Registration (FIRE) [J].
Lee, JS ;
Park, KS ;
Lee, DS ;
Lee, CW ;
Chung, JK ;
Lee, MC .
COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2005, 78 (02) :157-164
[16]  
Lee JS, 2002, IEEE NUCL SCI CONF R, P2027, DOI 10.1109/NSSMIC.2001.1009222
[17]  
Lee JS, 2001, J NUCL MED, V42, P938
[18]  
LEE JS, 2001, KOREAN J NUCL MED, V35, P43