Existence of Global Solutions to the Derivative NLS Equation with the Inverse Scattering Transform Method

被引:56
作者
Pelinovsky, Dmitry E. [1 ]
Shimabukuro, Yusuke [2 ]
机构
[1] McMaster Univ, Dept Math & Stat, Hamilton, ON L8S 4K1, Canada
[2] Acad Sinica, Inst Math, Taipei 10617, Taiwan
基金
加拿大自然科学与工程研究理事会;
关键词
NONLINEAR SCHRODINGER-EQUATION; WELL-POSEDNESS; SOLITARY WAVES; STABILITY; ASYMPTOTICS; SOLITONS;
D O I
10.1093/imrn/rnx051
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We address the existence of global solutions to the derivative nonlinear Schrodinger (DNLS) equation without the small-norm assumption. By using the inverse scattering transform method without eigenvalues and resonances, we construct a unique global solution in H-2(R) boolean AND H-1,H-1(R) which is also Lipschitz continuous with respect to the initial data. Compared to the existing literature on the spectral problem for the DNLS equation, the corresponding Riemann-Hilbert problem is defined in the complex plane with the jump on the real line.
引用
收藏
页码:5663 / 5728
页数:66
相关论文
共 42 条
[1]  
Ablowitz M.J., 2004, LONDON MATH SOC LECT
[2]  
[Anonymous], 2001, FOURIER ANAL, DOI DOI 10.1090/GSM/029
[3]   SCATTERING AND INVERSE SCATTERING FOR 1ST ORDER SYSTEMS [J].
BEALS, R ;
COIFMAN, RR .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1984, 37 (01) :39-90
[4]   INVERSE SCATTERING AND EVOLUTION-EQUATIONS [J].
BEALS, R ;
COIFMAN, RR .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1985, 38 (01) :29-42
[5]   Ill-posedness for the derivative Schrodinger and generalized Benjamin-Ono equations [J].
Biagioni, HA ;
Linares, F .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2001, 353 (09) :3649-3659
[6]   Stability of solitary waves for derivative nonlinear Schrodinger equation [J].
Colin, Mathieu ;
Ohta, Masahito .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2006, 23 (05) :753-764
[7]   A refined global well-posedness result for Schrodinger equations with derivative [J].
Colliander, J ;
Keel, M ;
Staffilani, G ;
Takaoka, H ;
Tao, T .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2002, 34 (01) :64-86
[8]   Global well-posedness for Schrodinger equations with derivative [J].
Colliander, J ;
Keel, M ;
Staffilani, G ;
Takaoka, H ;
Tao, T .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2001, 33 (03) :649-669
[9]   Stability of multi-solitons in the cubic NLS equation [J].
Contreras, Andres ;
Pelinovsky, Dmitry .
JOURNAL OF HYPERBOLIC DIFFERENTIAL EQUATIONS, 2014, 11 (02) :329-353
[10]   The asymptotic stability of solitons in the cubic NLS equation on the line [J].
Cuccagna, Scipio ;
Pelinovsky, Dmitry E. .
APPLICABLE ANALYSIS, 2014, 93 (04) :791-822