Maximal operator for multilinear Calderon-Zygmund singular integral operators on weighted Hardy spaces

被引:13
作者
Li, Wenjuan [1 ]
Xue, Qingying [1 ,2 ]
Yabuta, Kozo [3 ]
机构
[1] Beijing Normal Univ, Sch Math Sci, Lab Math & Complex Syst, Minist Educ, Beijing 100875, Peoples R China
[2] Inst Appl Phys & Computat Math, Beijing 100088, Peoples R China
[3] Kwansei Gakuin Univ, Math Sci Res Ctr, Sanda 6691337, Japan
基金
日本学术振兴会; 北京市自然科学基金;
关键词
Multiple weights; Weighted norm inequalities; Multilinear Calderon-Zygmund operators; Weighted Hardy spaces; Coltlar's inequality; INEQUALITIES;
D O I
10.1016/j.jmaa.2010.07.057
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, the maximal operator associated with multilinear Calderon-Zygmund singular integral operators will be studied by using an improved Coltlar's inequality. Moreover, weighted norm inequalities and some estimates on weighted Hardy spaces are obtained for this maximal operator. (C) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:384 / 392
页数:9
相关论文
共 50 条
[41]   A WEIGHTED COMPACTNESS CRITERION FOR COMMUTATORS ASSOCIATED WITH GENERALIZED CALDERON-ZYGMUND OPERATORS [J].
Yang, Li ;
He, Qianjun ;
Li, Pengtao ;
Zhao, Kai .
JOURNAL OF INTEGRAL EQUATIONS AND APPLICATIONS, 2023, 35 (02) :235-257
[42]   Linear bounds for Calderon-Zygmund operators with even kernel on UMD spaces [J].
Pott, Sandra ;
Stoica, Andrei .
JOURNAL OF FUNCTIONAL ANALYSIS, 2014, 266 (05) :3303-3319
[43]   WEIGHTED WEAK TYPE ENDPOINT ESTIMATES FOR THE COMPOSITIONS OF CALDERON-ZYGMUND OPERATORS [J].
Hu, Guoen .
JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2020, 109 (03) :320-339
[44]   The boundedness of multilinear Caldern-Zygmund operators on Hardy spaces [J].
Huang, Jizheng ;
Liu, Yu .
PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2013, 123 (03) :383-392
[45]   CALDERON-ZYGMUND SINGULAR INTEGRALS IN CENTRAL MORREY-ORLICZ SPACES [J].
Maligranda, Lech ;
Matsuoka, Katsuo .
TOHOKU MATHEMATICAL JOURNAL, 2020, 72 (02) :235-259
[46]   New bounds for bilinear Calderon-Zygmund operators and applications [J].
Damian, Wendolin ;
Hormozi, Mandi ;
Li, Kangwei .
REVISTA MATEMATICA IBEROAMERICANA, 2018, 34 (03) :1177-1210
[47]   Compact Commutators of Calderon-Zygmund and Generalized Fractional Integral Operators with a Function in Generalized Campanato Spaces on Generalized Morrey Spaces [J].
Arai, Ryutaro ;
Nakai, Eiichi .
TOKYO JOURNAL OF MATHEMATICS, 2019, 42 (02) :471-496
[48]   The Sharp Weighted Bound for Multilinear Maximal Functions and Caldern-Zygmund Operators [J].
Li, Kangwei ;
Moen, Kabe ;
Sun, Wenchang .
JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2014, 20 (04) :751-765
[49]   Calderón–Zygmund Operators on Weighted Hardy Spaces [J].
Ming-Yi Lee .
Potential Analysis, 2013, 38 :699-709
[50]   On the Separated Bumps Conjecture for Calderon-Zygmund Operators [J].
Lacey, Michael T. .
HOKKAIDO MATHEMATICAL JOURNAL, 2016, 45 (02) :223-242