Maximal operator for multilinear Calderon-Zygmund singular integral operators on weighted Hardy spaces

被引:13
作者
Li, Wenjuan [1 ]
Xue, Qingying [1 ,2 ]
Yabuta, Kozo [3 ]
机构
[1] Beijing Normal Univ, Sch Math Sci, Lab Math & Complex Syst, Minist Educ, Beijing 100875, Peoples R China
[2] Inst Appl Phys & Computat Math, Beijing 100088, Peoples R China
[3] Kwansei Gakuin Univ, Math Sci Res Ctr, Sanda 6691337, Japan
基金
日本学术振兴会; 北京市自然科学基金;
关键词
Multiple weights; Weighted norm inequalities; Multilinear Calderon-Zygmund operators; Weighted Hardy spaces; Coltlar's inequality; INEQUALITIES;
D O I
10.1016/j.jmaa.2010.07.057
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, the maximal operator associated with multilinear Calderon-Zygmund singular integral operators will be studied by using an improved Coltlar's inequality. Moreover, weighted norm inequalities and some estimates on weighted Hardy spaces are obtained for this maximal operator. (C) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:384 / 392
页数:9
相关论文
共 14 条
[1]  
[Anonymous], 1985, N HOLLAND MATH STUD
[2]   Weighted estimates for a class of multilinear fractional type operators [J].
Chen, Xi ;
Xue, Qingying .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 362 (02) :355-373
[3]   Maximal Operator for Multilinear Singular Integrals with Non-smooth Kernels [J].
Duong, Xuan Thinh ;
Gong, Ruming ;
Grafakos, Loukas ;
Li, Ji ;
Yan, Lixin .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2009, 58 (06) :2517-2541
[4]  
Garcia-Cuerva J., 1979, Diss. Math., V162, P1
[5]  
Grafakos L, 2002, PUBL MAT, P57
[6]   Multilinear Calderon-Zygmund theory [J].
Grafakos, L ;
Torres, RH .
ADVANCES IN MATHEMATICS, 2002, 165 (01) :124-164
[7]   Maximal operator and weighted norm inequalities for multilinear singular integrals [J].
Grafakos, L ;
Torres, RH .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2002, 51 (05) :1261-1276
[8]   ON MULTILINEAR FRACTIONAL INTEGRALS [J].
GRAFAKOS, L .
STUDIA MATHEMATICA, 1992, 102 (01) :49-56
[9]  
Grafakos L., 2001, Collect. Math., V52, P169
[10]  
Kenig CE, 1999, MATH RES LETT, V6, P1