Multi-symplectic Runge-Kutta-Nystrom methods for nonlinear Schrodinger equations with variable coefficients

被引:31
|
作者
Hong, Jialin
Liu, Xiao-yan
Li, Chun
机构
[1] Chinese Acad Sci, Acad Math & Syst Sci, Inst Computat Math & Sci Engn Computing, State Key Lab Sci & Engn Computing, Beijing 100080, Peoples R China
[2] NE Normal Univ, Dept Math, Changchun 130024, Peoples R China
[3] Chinese Acad Sci, Grad Sch, Beijing 100080, Peoples R China
关键词
Nonlinear Schrodinger equations; multi-symplectic conservation law; Runge-Kutta-Nystrom methods; charge conservation law;
D O I
10.1016/j.jcp.2007.06.023
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this paper, we consider Runge-Kutta-Nystrom (RKN) methods applied to nonlinear Schrodinger equations with variable coefficients (NLSEvc). Concatenating symplectic Nystrom methods in spatial direction and symplectic Runge-Kutta methods in temporal direction for NLSEvc leads to multi-symplectic integrators, i.e. to numerical methods which preserve the multi-symplectic conservation law (MSCL), we present the corresponding discrete version of MSCL. It is shown that the multi-symplectic RKN methods preserve not only the global symplectic structure in time, but also local and global discrete charge conservation laws under periodic boundary conditions. We present a (4-order) multi-symplectic RKN method and use it in numerical simulation of quasi-periodically solitary waves for NLSEvc, and we compare the multi-symplectic RKN method with a non-multi-symplectic RKN method on the errors of numerical solutions, the numerical errors of discrete energy, discrete momentum and discrete charge. The precise conservation of discrete charge under the multi-symplectic RKN discretizations is attested numerically. Some numerical superiorities of the multi-symplectic RKN methods are revealed. (c) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:1968 / 1984
页数:17
相关论文
共 50 条
  • [1] Multi-symplectic Runge-Kutta-Nystrom methods for nonsmooth nonlinear Schrodinger equations
    Bai, Jiejing
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2016, 444 (01) : 721 - 736
  • [2] Multi-symplectic Runge-Kutta methods for nonlinear dirac equations
    Hong, JL
    Li, C
    JOURNAL OF COMPUTATIONAL PHYSICS, 2006, 211 (02) : 448 - 472
  • [3] Practical symplectic partitioned Runge-Kutta and Runge-Kutta-Nystrom methods
    Blanes, S
    Moan, PC
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2002, 142 (02) : 313 - 330
  • [4] Order properties of symplectic Runge-Kutta-Nystrom methods
    Xiao, AG
    Tang, YF
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2004, 47 (4-5) : 569 - 582
  • [5] Exponentially Fitted Symplectic Runge-Kutta-Nystrom methods
    Monovasilis, Th.
    Kalogiratou, Z.
    Simos, T. E.
    APPLIED MATHEMATICS & INFORMATION SCIENCES, 2013, 7 (01): : 81 - 85
  • [6] Exponentially Fitted Symplectic Runge-Kutta-Nystrom Methods
    Monovasilis, Th.
    Kalogiratou, Z.
    Simos, T. E.
    NUMERICAL ANALYSIS AND APPLIED MATHEMATICS (ICNAAM 2012), VOLS A AND B, 2012, 1479 : 1395 - 1398
  • [7] Evolutionary Derivation of Quadratic Symplectic Runge-Kutta-Nystrom Methods
    Tsitouras, Ch.
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2014 (ICNAAM-2014), 2015, 1648
  • [8] New families of symplectic Runge-Kutta-Nystrom integration methods
    Blanes, S
    Casas, F
    Ros, J
    NUMERICAL ANALYSIS AND ITS APPLICATIONS, 2001, 1988 : 102 - 109
  • [9] Multi-symplectic variational integrators for nonlinear Schrodinger equations with variable coefficients
    Liao, Cui-Cui
    Cui, Jin-Chao
    Liang, Jiu-Zhen
    Ding, Xiao-Hua
    CHINESE PHYSICS B, 2016, 25 (01)
  • [10] Symplectic conditions for exponential fitting Runge-Kutta-Nystrom methods
    Tocino, A
    Vigo-Aguiar, J
    MATHEMATICAL AND COMPUTER MODELLING, 2005, 42 (7-8) : 873 - 876