Effects of Boron Content on Microstructure and Wear Properties of FeCoCrNiBx High-Entropy Alloy Coating by Laser Cladding

被引:28
|
作者
Liu, Dezheng [1 ]
Zhao, Jing [1 ]
Li, Yan [1 ]
Zhu, Wenli [1 ]
Lin, Liangxu [2 ]
机构
[1] Hubei Univ Arts & Sci, Hubei Key Lab Power Syst Design & Test Elect Vehi, Xiangyang 441053, Peoples R China
[2] Univ Wollongong, ARC Ctr Excellence Electromat Sci, Intelligent Polymer Res Inst, AIIM, Innovat Campus, Wollongong, NSW 2500, Australia
来源
APPLIED SCIENCES-BASEL | 2020年 / 10卷 / 01期
关键词
high-entropy alloy; coating; laser cladding; microstructure; wear resistance; ATOMIC SIZE DIFFERENCE; MECHANICAL-PROPERTIES; BEHAVIOR; TEMPERATURE; ELEMENTS;
D O I
10.3390/app10010049
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The FeCoCrNiBx high-entropy alloy (HEA) coatings with three different boron (B) contents were synthesized on Q245R steel (American grade: SA515 Gr60) by laser cladding deposition technology. Effects of B content on the microstructure and wear properties of FeCoCrNiBx HEA coating were investigated. In this study, the phase composition, microstructure, micro-hardness, and wear resistance (rolling friction) were investigated by X-ray diffraction (XRD), a scanning electron microscope (SEM), a micro hardness tester, and a roller friction wear tester, respectively. The FeCoCrNiBx coatings exhibited a typical dendritic and interdendritic structure, and the microstructure was refined with the increase of B content. Additionally, the coatings were found to be a simple face-centered cubic (FCC) solid solution with borides. In terms of mechanical properties, the hardness and wear resistance ability of the coating can be enhanced with the increase of the B content, and the maximum hardness value of three HEA coatings reached around 1025 HV0.2, which is higher than the hardness of the substrate material. It is suggested that the present fabricated HEA coatings possess potentials in application of wear resistance structures for Q245R steel.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Microstructure and wear resistance of laser cladding AlCoCrFeNiSiB high-entropy alloy with high boron content
    Li, Lincong
    Wang, Zhaohui
    Du, Wenbo
    Qi, Siyi
    Li, Shubo
    Du, Xian
    SURFACE & COATINGS TECHNOLOGY, 2024, 494
  • [2] Effect of boron addition on the microstructure and wear resistance of FeCoCrNiBx (x=0.5, 0.75, 1.0, 1.25) high-entropy alloy coating prepared by laser cladding
    Fuzhou University, Fuzhou
    350108, China
    不详
    350008, China
    不详
    350108, China
    Xiyou Jinshu Cailiao Yu Gongcheng, 6 (1418-1422):
  • [3] Effect of Boron Addition on the Microstructure and Wear Resistance of FeCoCrNiBx (x=0.5, 0.75, 1.0, 1.25) High-Entropy alloy Coating Prepared by Laser Cladding
    Chen Guojin
    Zhang Chong
    Tang Qunhua
    Dai Pinqiang
    RARE METAL MATERIALS AND ENGINEERING, 2015, 44 (06) : 1418 - 1422
  • [4] Microstructure and Wear Resistance of CoCrNiMnTix High-entropy Alloy Coating by Laser Cladding
    Gao, Yu-Long
    Ma, Guo-Liang
    Gao, Xiao-Hua
    Cui, Hong-Zhi
    Surface Technology, 2022, 51 (09): : 351 - 358
  • [5] Microstructure and Properties of CoCrFeMnNiTix High-Entropy Alloy Coating by Laser Cladding
    Liu, Hao
    Gao, Qiang
    Man, Jiaxiang
    Li, Xiaojia
    Yang, Haifeng
    Hao, Jingbin
    Zhongguo Jiguang/Chinese Journal of Lasers, 2022, 49 (08):
  • [6] Effects of Annealing on the Microstructure and Wear Resistance of Laser Cladding CrFeMoNbTiW High-Entropy Alloy Coating
    Shen, Qiang
    Li, Yan
    Zhao, Jing
    Liu, Dezheng
    Yang, Yongsheng
    CRYSTALS, 2021, 11 (09)
  • [7] Microstructure and properties of laser cladding CoCrFeNiSix high-entropy alloy coating
    Hao W.-J.
    Sun R.-L.
    Niu W.
    Tan J.-H.
    Li X.-L.
    Surface Technology, 2021, 50 (05): : 87 - 94
  • [8] Microstructure and properties of CoCrFeNiSix high-entropy alloy coating by laser cladding
    Tian Z.
    Li X.
    Qin Z.
    Yang X.
    Liu W.
    Zhang P.
    Hanjie Xuebao/Transactions of the China Welding Institution, 2022, 43 (12): : 53 - 63
  • [9] Microstructure and Properties of CoCrFeMnNiTi, High-Entropy Alloy Coating by Laser Cladding
    Liu Hao
    Gao Qiang
    Man Jiaxiang
    Li Xiaojia
    Yang Haifeng
    Hao Jingbin
    CHINESE JOURNAL OF LASERS-ZHONGGUO JIGUANG, 2022, 49 (08):
  • [10] Effect of Fe content on the microstructure and wear resistance of AlCoCrFeNi high-entropy alloy coating prepared by laser cladding
    Li, Ying
    Shi, Yongjun
    Li, Shiwei
    Yan, Xinyu
    Wang, Shuyao
    Zhuo, Xiao
    APPLIED SURFACE SCIENCE, 2025, 685