Partially congested propagation fronts in one-dimensional Navier-Stokes equations

被引:0
作者
Dalibard, Anne-Laure [1 ]
Perrin, Charlotte [2 ]
机构
[1] Univ Paris Diderot SPC, Sorbonne Univ, CNRS, LJLL, F-75005 Paris, France
[2] Aix Marseille Univ, CNRS, Cent Marseille, I2M, Aix En Provence, France
基金
欧洲研究理事会; 美国国家科学基金会;
关键词
Navier-Stokes equations; Free boundary problem; Traveling waves; Nonlinear stability; STABILITY; MODEL; WAVE;
D O I
10.1007/s41808-021-00131-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
These notes are dedicated to the analysis of the one-dimensional free-congested Navier-Stokes equations. After a brief synthesis of the results obtained in Dalibard and Perrin (Commun Math Sci 18(7):1775-1813, 2020) related to the existence and the asymptotic stability of partially congested profiles associated to the soft congestion Navier-Stokes system, we present a first local well-posedness result for the one-dimensional free-congested Navier-Stokes equations.
引用
收藏
页码:491 / 507
页数:17
相关论文
共 15 条
  • [1] Particle approximation of a constrained model for traffic flow
    Berthelin, Florent
    Goatin, Paola
    [J]. NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2017, 24 (05):
  • [2] Soft congestion approximation to the one-dimensional constrained Euler equations
    Bianchini, Roberta
    Perrin, Charlotte
    [J]. NONLINEARITY, 2021, 34 (10) : 6901 - 6929
  • [3] A hierarchy of models for two-phase flows
    Bouchut, F
    Brenier, Y
    Cortes, J
    Ripoll, JF
    [J]. JOURNAL OF NONLINEAR SCIENCE, 2000, 10 (06) : 639 - 660
  • [4] Singular limit of a Navier-Stokes system leading to a free/congested zones two-phase model
    Bresch, Didier
    Perrin, Charlotte
    Zatorska, Ewelina
    [J]. COMPTES RENDUS MATHEMATIQUE, 2014, 352 (09) : 685 - 690
  • [5] Dalibard AL, 2020, COMMUN MATH SCI, V18, P1775
  • [6] Numerical simulations of the Euler system with congestion constraint
    Degond, Pierre
    Hua, Jiale
    Navoret, Laurent
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2011, 230 (22) : 8057 - 8088
  • [7] CONGESTED SHALLOW WATER MODEL: ROOF MODELING IN FREE SURFACE FLOW
    Godlewski, Edwige
    Parisot, Martin
    Sainte-Marie, Jacques
    Wahl, Fabien
    [J]. ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2018, 52 (05): : 1679 - 1707
  • [8] Haspot, 2018, HAL01716150 HAL
  • [9] Hyperbolic Free Boundary Problems and Applications to Wave-Structure Interactions
    Iguchi, Tatsuo
    Lannes, David
    [J]. INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2021, 70 (01) : 353 - 464
  • [10] Lannes D., 2017, Ann. PDE, V3