Phase behaviours of superionic water at planetary conditions

被引:46
作者
Cheng, Bingqing [1 ,2 ]
Bethkenhagen, Mandy [3 ]
Pickard, Chris J. [4 ,5 ]
Hamel, Sebastien [6 ]
机构
[1] Dept Comp Sci & Technol, Cambridge, England
[2] Univ Cambridge, Cavendish Lab, Cambridge, England
[3] Univ Lyon 1, Ecole Normale Super Lyon, Lab Geol Lyon, CNRS UMR 5276, Lyon, France
[4] Univ Cambridge, Dept Mat Sci, Met, Cambridge, England
[5] Tohoku Univ, Adv Inst Mat Res, Sendai, Miyagi, Japan
[6] Lawrence Livermore Natl Lab, Phys & Life Sci Directorate, Livermore, CA 94550 USA
基金
英国工程与自然科学研究理事会; 欧盟地平线“2020”;
关键词
ICE; SYSTEMS; H2O;
D O I
10.1038/s41567-021-01334-9
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Superionic water is believed to exist in the interior of ice giant planets. By combining machine learning and free-energy methods, the phase behaviours of water at the extreme pressures and temperatures prevalent in such planets are predicted. Most water in the Universe may be superionic, and its thermodynamic and transport properties are crucial for planetary science but difficult to probe experimentally or theoretically. We use machine learning and free-energy methods to overcome the limitations of quantum mechanical simulations and characterize hydrogen diffusion, superionic transitions and phase behaviours of water at extreme conditions. We predict that close-packed superionic phases, which have a fraction of mixed stacking for finite systems, are stable over a wide temperature and pressure range, whereas a body-centred cubic superionic phase is only thermodynamically stable in a small window but is kinetically favoured. Our phase boundaries, which are consistent with existing-albeit scarce-experimental observations, help resolve the fractions of insulating ice, different superionic phases and liquid water inside ice giants.
引用
收藏
页码:1228 / +
页数:6
相关论文
共 43 条
[1]   Inorganic Solid-State Electrolytes for Lithium Batteries: Mechanisms and Properties Governing Ion Conduction [J].
Bachman, John Christopher ;
Muy, Sokseiha ;
Grimaud, Alexis ;
Chang, Hao-Hsun ;
Pour, Nir ;
Lux, Simon F. ;
Paschos, Odysseas ;
Maglia, Filippo ;
Lupart, Saskia ;
Lamp, Peter ;
Giordano, Livia ;
Shao-Horn, Yang .
CHEMICAL REVIEWS, 2016, 116 (01) :140-162
[2]   Generalized neural-network representation of high-dimensional potential-energy surfaces [J].
Behler, Joerg ;
Parrinello, Michele .
PHYSICAL REVIEW LETTERS, 2007, 98 (14)
[3]   Constructing high-dimensional neural network potentials: A tutorial review [J].
Behler, Joerg .
INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 2015, 115 (16) :1032-1050
[4]   Superionic and metallic states of water and ammonia at giant planet conditions [J].
Cavazzoni, C ;
Chiarotti, GL ;
Scandolo, S ;
Tosatti, E ;
Bernasconi, M ;
Parrinello, M .
SCIENCE, 1999, 283 (5398) :44-46
[5]   Nuclear Quantum Effects in Water and Aqueous Systems: Experiment, Theory, and Current Challenges [J].
Ceriotti, Michele ;
Fang, Wei ;
Kusalik, Peter G. ;
McKenzie, Ross H. ;
Michaelides, Angelos ;
Morales, Miguel A. ;
Markland, Thomas E. .
CHEMICAL REVIEWS, 2016, 116 (13) :7529-7550
[6]   Evidence for supercritical behaviour of high-pressure liquid hydrogen [J].
Cheng, Bingqing ;
Mazzola, Guglielmo ;
Pickard, Chris J. ;
Ceriotti, Michele .
NATURE, 2020, 585 (7824) :217-+
[7]   Ab initio thermodynamics of liquid and solid water [J].
Cheng, Bingqing ;
Engel, Edgar A. ;
Behler, Joerg ;
Dellago, Christoph ;
Ceriotti, Michele .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2019, 116 (04) :1110-1115
[8]   The anisotropic hard-sphere crystal-melt interfacial free energy from fluctuations [J].
Davidchack, Ruslan L. ;
Morris, James R. ;
Laird, Brian B. .
JOURNAL OF CHEMICAL PHYSICS, 2006, 125 (09)
[9]   NEW HIGH-PRESSURE PHASES OF ICE [J].
DEMONTIS, P ;
LESAR, R ;
KLEIN, ML .
PHYSICAL REVIEW LETTERS, 1988, 60 (22) :2284-2287
[10]  
Deringer VL., 2019, ADV MATER, V31, P1902765, DOI [DOI 10.1002/ADMA.201902765, 10.1002/adma.201902765]