Remaining useful life prediction of bearing based on stacked autoencoder and recurrent neural network

被引:75
作者
Han, Tian [1 ]
Pang, Jiachen [1 ]
Tan, Andy C. C. [2 ]
机构
[1] Univ Sci & Technol Beijing, Sch Mech Engn, 30 Xueyuan Rd, Beijing 100083, Peoples R China
[2] Univ Tunku Abdul Rahman, LKC Fac Engn, Sungai Long Campus, Kajang 43000, Selangor, Malaysia
基金
中国国家自然科学基金;
关键词
Remaining useful life prediction; Stacked autoencoder; Recurrent neural network; Bearing; SUPPORT VECTOR MACHINE;
D O I
10.1016/j.jmsy.2021.10.011
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Remaining Useful Life (RUL) prediction play a crucial part in bearing maintenance, which directly affects the production efficiency and safety of equipment. Moreover, the accuracy of the prediction model is constrained by the feature extraction process and full life data of bearings. In this paper, the life prediction method of faulty rolling bearing with limited data is presented including degradation state model and RUL prediction model. In order to obtain health indication (HI) without human interference in the degradation state modeling stage, the bottleneck structure of Stacked Autoencoder (SAE) is utilized to fuse the four selected features into one HI using Intelligent Maintenance Systems (IMS) bearing dataset as training sample. In RUL prediction model, the Long Short-Term Memory (LSTM) neural network is carried out to establish the model with Standard deviation (Std) input and HI training label. In order to solve the problem of large training error caused by insufficient data in the failure stage of bearing acceleration test, the third-order spline curve interpolation is utilized to enhance the data points. Through parameter analysis, the RMSE and MAE of the test set on the prediction model are 0.032582 and 0.024038, respectively. Furthermore, the effectiveness of the proposed method is further validated by dataset from Case Western Reserve University (CWRU) with different bearing fault degrees. The analysis indicates that the RUL prediction of bearing fault data is consistent with the size of artificial added faults, that is,the more severe the fault the shorter the time of remaining life. The results validate that the proposed method can effectively extract the bearing health state by incorporating feature fusion and establish accurately prediction model for bearing remaining life.
引用
收藏
页码:576 / 591
页数:16
相关论文
共 50 条
  • [31] A weighted time embedding transformer network for remaining useful life prediction of rolling bearing
    Zhang, Mingyuan
    He, Chen
    Huang, Chengxuan
    Yang, Jianhong
    RELIABILITY ENGINEERING & SYSTEM SAFETY, 2024, 251
  • [32] A novel deep learning method based on attention mechanism for bearing remaining useful life prediction
    Chen, Yuanhang
    Peng, Gaoliang
    Zhu, Zhiyu
    Li, Sijue
    APPLIED SOFT COMPUTING, 2020, 86
  • [33] Prediction of bearing remaining useful life based on DACN-ConvLSTM model
    Zhu, Guopeng
    Zhu, Zening
    Xiang, Ling
    Hu, Aijun
    Xu, Yonggang
    MEASUREMENT, 2023, 211
  • [34] Bearing Fault Diagnosis Based on Improved Stacked Recurrent Neural Network
    Zhou Q.
    Shen H.
    Zhao J.
    Liu X.
    Tongji Daxue Xuebao/Journal of Tongji University, 2019, 47 (10): : 1500 - 1507
  • [35] Simultaneous Bearing Fault Recognition and Remaining Useful Life Prediction Using Joint-Loss Convolutional Neural Network
    Liu, Ruonan
    Yang, Boyuan
    Hauptmann, Alexander G.
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2020, 16 (01) : 87 - 96
  • [36] Remaining useful life prediction for space bearing with cage friction fault based on data pre-screening and gated recurrent unit
    Wang, Jianwen
    Pan, Qiang
    He, Tian
    Wang, Hong
    Qing, Tao
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2023, 34 (12)
  • [37] Remaining Useful Life Prediction and Uncertainty Quantification for Bearings Based on Cascaded Multiscale Convolutional Neural Network
    He, Jialong
    Wu, Chenchen
    Luo, Wei
    Qian, Chenhui
    Liu, Shaoyang
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2024, 73 : 1 - 13
  • [38] Remaining useful life prediction of PEMFC based on long short-term memory recurrent neural networks
    Liu, Jiawei
    Li, Qi
    Chen, Weirong
    Yan, Yu
    Qiu, Yibin
    Cao, Taiqiong
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2019, 44 (11) : 5470 - 5480
  • [39] Remaining useful life prediction of machinery based on K-S distance and LSTM neural network
    Ge Y.
    Guo L.
    Dou Y.
    International Journal of Performability Engineering, 2019, 15 (03) : 895 - 901
  • [40] Prediction of bearing remaining useful life involving rotation period
    Cao Z.
    Ye C.
    Jisuanji Jicheng Zhizao Xitong/Computer Integrated Manufacturing Systems, CIMS, 2023, 29 (08): : 2743 - 2750