Remaining useful life prediction of bearing based on stacked autoencoder and recurrent neural network

被引:75
作者
Han, Tian [1 ]
Pang, Jiachen [1 ]
Tan, Andy C. C. [2 ]
机构
[1] Univ Sci & Technol Beijing, Sch Mech Engn, 30 Xueyuan Rd, Beijing 100083, Peoples R China
[2] Univ Tunku Abdul Rahman, LKC Fac Engn, Sungai Long Campus, Kajang 43000, Selangor, Malaysia
基金
中国国家自然科学基金;
关键词
Remaining useful life prediction; Stacked autoencoder; Recurrent neural network; Bearing; SUPPORT VECTOR MACHINE;
D O I
10.1016/j.jmsy.2021.10.011
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Remaining Useful Life (RUL) prediction play a crucial part in bearing maintenance, which directly affects the production efficiency and safety of equipment. Moreover, the accuracy of the prediction model is constrained by the feature extraction process and full life data of bearings. In this paper, the life prediction method of faulty rolling bearing with limited data is presented including degradation state model and RUL prediction model. In order to obtain health indication (HI) without human interference in the degradation state modeling stage, the bottleneck structure of Stacked Autoencoder (SAE) is utilized to fuse the four selected features into one HI using Intelligent Maintenance Systems (IMS) bearing dataset as training sample. In RUL prediction model, the Long Short-Term Memory (LSTM) neural network is carried out to establish the model with Standard deviation (Std) input and HI training label. In order to solve the problem of large training error caused by insufficient data in the failure stage of bearing acceleration test, the third-order spline curve interpolation is utilized to enhance the data points. Through parameter analysis, the RMSE and MAE of the test set on the prediction model are 0.032582 and 0.024038, respectively. Furthermore, the effectiveness of the proposed method is further validated by dataset from Case Western Reserve University (CWRU) with different bearing fault degrees. The analysis indicates that the RUL prediction of bearing fault data is consistent with the size of artificial added faults, that is,the more severe the fault the shorter the time of remaining life. The results validate that the proposed method can effectively extract the bearing health state by incorporating feature fusion and establish accurately prediction model for bearing remaining life.
引用
收藏
页码:576 / 591
页数:16
相关论文
共 50 条
  • [1] Remaining useful life prediction method based on stacked autoencoder and generalized wiener process for degrading bearing
    Chen, Zhe
    Li, Yonghua
    Gong, Qi
    Wang, Denglong
    Yin, Xuejiao
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2024, 35 (10)
  • [2] Bearing remaining useful life prediction based on deep autoencoder and deep neural networks
    Ren, Lei
    Sun, Yaqiang
    Cui, Jin
    Zhang, Lin
    JOURNAL OF MANUFACTURING SYSTEMS, 2018, 48 : 71 - 77
  • [3] Deep Recurrent Convolutional Neural Network for Remaining Useful Life Prediction
    Ma, Meng
    Mao, Zhu
    2019 IEEE INTERNATIONAL CONFERENCE ON PROGNOSTICS AND HEALTH MANAGEMENT (ICPHM), 2019,
  • [4] Bearing Remaining Useful Life Prediction Based on Relation Network
    Zhao Z.-H.
    Zhang R.
    Sun S.-S.
    Zidonghua Xuebao/Acta Automatica Sinica, 2023, 49 (07): : 1549 - 1557
  • [5] A recurrent neural network based health indicator for remaining useful life prediction of bearings
    Guo, Liang
    Li, Naipeng
    Jia, Feng
    Lei, Yaguo
    Lin, Jing
    NEUROCOMPUTING, 2017, 240 : 98 - 109
  • [6] Remaining useful life prediction based on spatiotemporal autoencoder
    Xu, Tao
    Pi, Dechang
    Zeng, Shi
    MULTIMEDIA TOOLS AND APPLICATIONS, 2024, 83 (28) : 71407 - 71433
  • [7] Remaining useful life prediction based on an integrated neural network
    Zhang Y.-F.
    Lu Z.-Q.
    Gongcheng Kexue Xuebao/Chinese Journal of Engineering, 2020, 42 (10): : 1372 - 1380
  • [8] Convolution neural network based particle filtering for remaining useful life prediction of rolling bearing
    Liu, Xiyang
    Chen, Guo
    Cheng, Zhenjie
    Wei, Xunkai
    Wang, Hao
    ADVANCES IN MECHANICAL ENGINEERING, 2022, 14 (06)
  • [9] Practical Options for Adopting Recurrent Neural Network and Its Variants on Remaining Useful Life Prediction
    Wang, Youdao
    Zhao, Yifan
    Addepalli, Sri
    CHINESE JOURNAL OF MECHANICAL ENGINEERING, 2021, 34 (01)
  • [10] Gated recurrent unit based recurrent neural network for remaining useful life prediction of nonlinear deterioration process
    Chen Jinglong
    Jing Hongjie
    Chang Yuanhong
    Liu Qian
    RELIABILITY ENGINEERING & SYSTEM SAFETY, 2019, 185 : 372 - 382