Underwater Superoleophobic and Salt-Tolerant Sodium Alginate/N-Succinyl Chitosan Composite Aerogel for Highly Efficient Oil-Water Separation

被引:46
|
作者
Wang, Cheng [1 ]
He, Guanghua [1 ]
Cao, Jilong [1 ]
Fan, Lihong [1 ]
Cai, Weiquan [2 ]
Yin, Yihua [1 ]
机构
[1] Wuhan Univ Technol, Sch Chem Chem Engn & Life Sci, Wuhan 430070, Peoples R China
[2] Guangzhou Univ, Sch Chem & Chem Engn, Guangzhou 510006, Peoples R China
基金
中国国家自然科学基金;
关键词
double cross-linked aerogel; oil-water separation; underwater superoleophobicity; salt tolerance; recyclable; OIL/WATER SEPARATION; NANOFIBROUS MEMBRANE; COATED MESH; SHALE GAS; FABRICATION; SUPERHYDROPHILICITY; PURIFICATION; TECHNOLOGY; HYDROGEL; ADHESION;
D O I
10.1021/acsapm.9b00908
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Materials for oil-water separation under harsh conditions that exhibit high separation efficiency, salt tolerance, and the capability of high-speed separation and reusability are in great demand. In this study, we introduce a series of sodium alginate (SA)/N-succinyl chitosan (NSCS) composite aerogels with outstanding mechanical strength, robust salt tolerance, and high oil-water separation efficiency. These aerogels were well designed and prepared through a combination of a freeze-drying method, ionic cross-linking, and chemical cross-linking. Due to their remarkable mechanical performance and good flexibility, the composite aerogels could achieve oil-water separation under various harsh conditions. The separation efficiency reached 99% owing to the outstanding underwater superoleophobicity and high-porosity structure of the aerogel. More importantly, the aerogels could preserve their high separation efficiency and underwater superoleophobicity after being soaked in a saturated NaCl solution for 30 days or after 30 separation cycles, which suggested their favorable stability under high-salinity conditions. These results indicated that SA/NSCS aerogels were qualified materials for oil-water separation, which gives us hope for their application in oil-water separation under harsh conditions.
引用
收藏
页码:1124 / 1133
页数:10
相关论文
共 50 条
  • [11] Robust Nacrelike Graphene Oxide-Calcium Carbonate Hybrid Mesh with Underwater Superoleophobic Property for Highly Efficient Oil/Water Separation
    Dai, Jiangdong
    Wang, Lulu
    Wang, Yi
    Tian, Sujun
    Tian, Xiaohua
    Xie, Atian
    Zhang, Ruilong
    Yan, Yongsheng
    Pan, Jianming
    ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (04) : 4482 - 4493
  • [12] Underwater superoleophobic modified polysulfone electrospun membrane with efficient antifouling for ultrafast gravitational oil-water separation
    Obaid, M.
    Yang, Euntae
    Kang, Dong-Hee
    Yoon, Myung-Han
    Kim, In S.
    SEPARATION AND PURIFICATION TECHNOLOGY, 2018, 200 : 284 - 293
  • [13] One-step constructing of underwater superoleophobic bed for highly efficient oil-in-water emulsions separation
    Niu, Zhenhua
    Luo, Wenjia
    Liu, Weimin
    Sun, Qing
    Mu, Peng
    Li, Jian
    JOURNAL OF DISPERSION SCIENCE AND TECHNOLOGY, 2023, 44 (10) : 1864 - 1872
  • [14] A novel bird-nest-like air superoleophobic/superhydrophilic Cu(OH)2-based composite coating for efficient oil-water separation
    Zeng, Zhiwei
    Wu, Xinzhu
    Liu, Yan
    Long, Lulu
    Wang, Bo
    Wang, Lilin
    Yang, Gang
    Zhang, Xiaohong
    Shen, Fei
    Zhang, Yanzong
    FRONTIERS OF MATERIALS SCIENCE, 2022, 16 (02)
  • [15] Facile fabrication of underwater superoleophobic membrane based on polyacrylamide/chitosan hydrogel modified metal mesh for oil-water separation
    Zhang, Yang
    Cao, Zheng
    Luo, Zili
    Li, Wenjun
    Fu, Tao
    Qiu, Wang
    Lai, Zhirong
    Cheng, Junfeng
    Yang, Haicun
    Ma, Wenzhong
    Liu, Chunlin
    JOURNAL OF POLYMER SCIENCE, 2022, 60 (15) : 2329 - 2342
  • [16] PVA/SiO2-coated stainless steel mesh with superhydrophilic-underwater superoleophobic for efficient oil-water separation
    Zhang, Xinying
    Wang, Chaoqun
    Liu, Xiaoyan
    Wang, Jinhua
    Zhang, Chenying
    Wen, Yuling
    DESALINATION AND WATER TREATMENT, 2018, 126 : 157 - 163
  • [17] 3D printed robust superhydrophilic and underwater superoleophobic composite membrane for high efficient oil/water separation
    Li, Xipeng
    Shan, Huiting
    Zhang, Wei
    Li, Baoan
    SEPARATION AND PURIFICATION TECHNOLOGY, 2020, 237 (237)
  • [18] Super-elastic and highly hydrophobic/superoleophilic sodium alginate/cellulose aerogel for oil/water separation
    Yang, Jin
    Xia, Yunfei
    Xu, Peng
    Chen, Beibei
    CELLULOSE, 2018, 25 (06) : 3533 - 3544
  • [19] Facile fabrication of underwater superoleophobic TiO2 coated mesh for highly efficient oil/water separation
    Li, Jian
    Yan, Long
    Hu, Wenfang
    Li, Dianming
    Zha, Fei
    Lei, Ziqiang
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2016, 489 : 441 - 446
  • [20] Facile fabrication of superhydrophilic and underwater superoleophobic nanofiber membranes for highly efficient separation of oil-in-water emulsion
    Obaid, M.
    Mohamed, Hend Omar
    Alayande, Abayomi Babatunde
    Kang, Yesol
    Ghaffour, Noreddine
    Kim, In S.
    SEPARATION AND PURIFICATION TECHNOLOGY, 2021, 272