Autofluorescence Imaging to Evaluate Cellular Metabolism

被引:7
作者
Theodossiou, Anna [1 ]
Hu, Linghao [1 ]
Wang, Nianchao [1 ]
Uyen Nguyen [1 ]
Walsh, Alex J. [1 ]
机构
[1] Texas A&M Univ, Dept Biomed Engn, College Stn, TX 77843 USA
来源
JOVE-JOURNAL OF VISUALIZED EXPERIMENTS | 2021年 / 177期
关键词
FLUORESCENCE LIFETIME; IN-VIVO; EFFECTOR FUNCTION; MICROSCOPY; NAD(P)H; CELLS; HETEROGENEITY; MITOCHONDRIA; SPECTROSCOPY; BIOMARKER;
D O I
10.3791/63282
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Cellular metabolism is the process by which cells generate energy, and many diseases, including cancer, are characterized by abnormal metabolism. Reduced nicotinamide adenine (phosphate) dinucleotide (NAD(P)H) and oxidized flavin adenine dinucleotide (FAD) are coenzymes of metabolic reactions. NAD(P)H and FAD exhibit autofluorescence and can be spectrally isolated by excitation and emission wavelengths. Both coenzymes, NAD(P)H and FAD, can exist in either a free or protein bound configuration, each of which has a distinct fluorescence lifetime-the time for which the fluorophore remains in the excited state. Fluorescence lifetime imaging (FLIM) allows quantification of the fluorescence intensity and lifetimes of NAD(P)H and FAD for label-free analysis of cellular metabolism. Fluorescence intensity and lifetime microscopes can be optimized for imaging NAD(P)H and FAD by selecting the appropriate excitation and emission wavelengths. Metabolic perturbations by cyanide verify autofluorescence imaging protocols to detect metabolic changes within cells. This article will demonstrate the technique of autofluorescence imaging of NAD(P)H and FAD for measuring cellular metabolism.
引用
收藏
页数:23
相关论文
共 63 条
[1]  
Becker Wolfgang., 2021, The bh TCSPC Handbook, V9th
[2]   Fluorescence Lifetime Measurements and Biological Imaging [J].
Berezin, Mikhail Y. ;
Achilefu, Samuel .
CHEMICAL REVIEWS, 2010, 110 (05) :2641-2684
[3]   Metabolic mapping of MCF10A human breast cells via multiphoton fluorescence lifetime imaging of the coenzyme NADH [J].
Bird, DK ;
Yan, L ;
Vrotsos, KM ;
Eliceiri, KW ;
Vaughan, EM ;
Keely, PJ ;
White, JG ;
Ramanujam, N .
CANCER RESEARCH, 2005, 65 (19) :8766-8773
[4]   High-speed label-free two-photon fluorescence microscopy of metabolic transients during neuronal activity [J].
Bower, Andrew J. ;
Renteria, Carlos ;
Li, Joanne ;
Marjanovic, Marina ;
Barkalifa, Ronit ;
Boppart, Stephen A. .
APPLIED PHYSICS LETTERS, 2021, 118 (08)
[5]  
CellProfiler, 2007, DOWNL
[6]  
CHANCE B, 1979, J BIOL CHEM, V254, P4764
[7]   Posttranscriptional Control of T Cell Effector Function by Aerobic Glycolysis [J].
Chang, Chih-Hao ;
Curtis, Jonathan D. ;
Maggi, Leonard B., Jr. ;
Faubert, Brandon ;
Villarino, Alejandro V. ;
O'Sullivan, David ;
Huang, Stanley Ching-Cheng ;
van der Windt, Gerritje J. W. ;
Blagih, Julianna ;
Qiu, Jing ;
Weber, Jason D. ;
Pearce, Edward J. ;
Jones, Russell G. ;
Pearce, Erika L. .
CELL, 2013, 153 (06) :1239-1251
[8]   Autofluorescence of Breast Tissues: Evaluation of Discriminating Algorithms for Diagnosis of Normal, Benign, and Malignant Conditions [J].
Chowdary, M. V. P. ;
Mahato, K. K. ;
Kumar, K. Kalyan ;
Mathew, Stanley ;
Rao, Lakshmi ;
Krishna, C. Murali ;
Kurien, Jacob .
PHOTOMEDICINE AND LASER SURGERY, 2009, 27 (02) :241-252
[9]   Fluorescence lifetime imaging microscopy: fundamentals and advances in instrumentation, analysis, and applications [J].
Datta, Rupsa ;
Heaster, Tiffany M. ;
Sharick, Joe T. ;
Gillette, Amani A. ;
Skala, Melissa C. .
JOURNAL OF BIOMEDICAL OPTICS, 2020, 25 (07)
[10]   Investigation of near-infrared autofluorescence imaging for the detection of breast cancer [J].
Demos, SG ;
Bold, R ;
White, RD ;
Ramsamooj, R .
IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 2005, 11 (04) :791-798