Si alloy/graphite coating design as anode for Li-ion batteries with high volumetric energy density

被引:12
作者
Du, Zhijia [1 ]
Li, Jianlin [1 ]
Daniel, C. [1 ]
Wood, D. L., III [1 ]
机构
[1] Oak Ridge Natl Lab, Energy & Transportat Sci Div, Oak Ridge, TN 37831 USA
关键词
Silicon alloy; anode coating; Li-ion battery; energy density; NEGATIVE ELECTRODE MATERIALS; SILICON ELECTRODES; BINDER; PERFORMANCE; MECHANISMS; CELLS; GRAPHITE; CATHODES; FAILURE; ALLOYS;
D O I
10.1016/j.electacta.2017.09.087
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
A simplified mathematical model is developed for designing high-energy-density Si alloy/graphite coatings. The design is discussed based on a set of metrics related to their implementation in practical cells including volumetric capacity, average voltage, volumetric energy density, particle expansion, and cell expansion. To achieve the same energy density improvement, one can use either high capacity Si alloys at a lower weight ratio in Si alloy/graphite coatings or low capacity Si alloys at a higher weight ratio. However, high capacity Si alloys have high volume expansion at the particle level, which tends to have SEI stabilization issues, while low capacity Si alloys lead to high volume expansion at cell level. Gravimetric energy density is also calculated in the model, and it is found that the energy density improvement based on a gravimetric basis is smaller than that of a volumetric one. The findings from this model are highly beneficial for Si alloy/graphite coating design for achieving maximum energy density with respect to the volume expansion issue. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:123 / 129
页数:7
相关论文
共 44 条
[11]   NixSi1-x Alloys Prepared by Mechanical Milling as Negative Electrode Materials for Lithium Ion Batteries [J].
Du, Zhijia ;
Ellis, S. N. ;
Dunlap, R. A. ;
Obrovac, M. N. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2016, 163 (02) :A13-A18
[12]   Combinatorial Investigations of Ni-Si Negative Electrode Materials for Li-Ion Batteries [J].
Du, Zhijia ;
Hatchard, T. D. ;
Dunlap, R. A. ;
Obrovac, M. N. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2015, 162 (09) :A1858-A1863
[13]   High Energy Density Calendered Si Alloy/Graphite Anodes [J].
Du, Zhijia ;
Dunlap, R. A. ;
Obrovac, M. N. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2014, 161 (10) :A1698-A1705
[14]   Li Ion Cells Comprising Lithiated Columnar Silicon Film Anodes, TiS2 Cathodes and Fluoroethyene Carbonate (FEC) as a Critically Important Component [J].
Elazari, Ran ;
Salitra, Gregory ;
Gershinsky, Gregory ;
Garsuch, Arnd ;
Panchenko, Alexander ;
Aurbach, Doron .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2012, 159 (09) :A1440-A1445
[15]   The effect of pressure on the electroanalytical response of graphite anodes and LiCoO2 cathodes for Li-ion batteries [J].
Gnanaraj, JS ;
Cohen, YS ;
Levi, MD ;
Aurbach, D .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2001, 516 (1-2) :89-102
[16]   Phenolic Resin as an Inexpensive High Performance Binder for Li-Ion Battery Alloy Negative Electrodes [J].
Hatchard, T. D. ;
Bissonnette, P. ;
Obrovac, M. N. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2016, 163 (09) :A2035-A2039
[17]   Silicon/graphite composite electrodes for high-capacity anodes:: Influence of binder chemistry on cycling stability [J].
Hochgatterer, N. S. ;
Schweiger, M. R. ;
Koller, S. ;
Raimann, P. R. ;
Woehrle, T. ;
Wurm, C. ;
Winter, M. .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2008, 11 (05) :A76-A80
[18]  
HOWELL D, 2008, PROGR REPORT ENERGY
[19]   Li15Si4 Formation in Silicon Thin Film Negative Electrodes [J].
Iaboni, D. S. M. ;
Obrovac, M. N. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2016, 163 (02) :A255-A261
[20]  
Jansen A. N., 2015, 27 ECS M CHIC ILL