Si alloy/graphite coating design as anode for Li-ion batteries with high volumetric energy density

被引:12
作者
Du, Zhijia [1 ]
Li, Jianlin [1 ]
Daniel, C. [1 ]
Wood, D. L., III [1 ]
机构
[1] Oak Ridge Natl Lab, Energy & Transportat Sci Div, Oak Ridge, TN 37831 USA
关键词
Silicon alloy; anode coating; Li-ion battery; energy density; NEGATIVE ELECTRODE MATERIALS; SILICON ELECTRODES; BINDER; PERFORMANCE; MECHANISMS; CELLS; GRAPHITE; CATHODES; FAILURE; ALLOYS;
D O I
10.1016/j.electacta.2017.09.087
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
A simplified mathematical model is developed for designing high-energy-density Si alloy/graphite coatings. The design is discussed based on a set of metrics related to their implementation in practical cells including volumetric capacity, average voltage, volumetric energy density, particle expansion, and cell expansion. To achieve the same energy density improvement, one can use either high capacity Si alloys at a lower weight ratio in Si alloy/graphite coatings or low capacity Si alloys at a higher weight ratio. However, high capacity Si alloys have high volume expansion at the particle level, which tends to have SEI stabilization issues, while low capacity Si alloys lead to high volume expansion at cell level. Gravimetric energy density is also calculated in the model, and it is found that the energy density improvement based on a gravimetric basis is smaller than that of a volumetric one. The findings from this model are highly beneficial for Si alloy/graphite coating design for achieving maximum energy density with respect to the volume expansion issue. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:123 / 129
页数:7
相关论文
共 44 条
[1]  
[Anonymous], 2015, BATPAC BATTERY PERFO
[2]   Capacity fade mechanisms and side reactions in lithium-ion batteries [J].
Arora, P ;
White, RE ;
Doyle, M .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1998, 145 (10) :3647-3667
[3]   SYNTHESIS AND ELECTRICAL-RESISTIVITY OF LITHIUM-PYROGRAPHITE INTERCALATION COMPOUNDS (STAGE-I, STAGE-II AND STAGE-III) [J].
BILLAUD, D ;
MCRAE, E ;
HEROLD, A .
MATERIALS RESEARCH BULLETIN, 1979, 14 (07) :857-864
[4]   Introducing Symmetric Li-Ion Cells as a Tool to Study Cell Degradation Mechanisms [J].
Burns, J. C. ;
Krause, L. J. ;
Le, Dinh-Ba ;
Jensen, L. D. ;
Smith, A. J. ;
Xiong, Deijun ;
Dahn, J. R. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2011, 158 (12) :A1417-A1422
[5]  
Chevrier V. L., 2017, ECS FALL M PHON AZ O
[6]   Evaluating Si-Based Materials for Li-Ion Batteries in Commercially Relevant Negative Electrodes [J].
Chevrier, Vincent L. ;
Liu, Li ;
Dinh Ba Le ;
Lund, Jesse ;
Molla, Biniam ;
Reimer, Karl ;
Krause, Larry J. ;
Jensen, Lowell D. ;
Figgemeier, Egbert ;
Eberman, Kevin W. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2014, 161 (05) :A783-A791
[7]   Effect of fluoroethylene carbonate additive on interfacial properties of silicon thin-film electrode [J].
Choi, Nam-Soon ;
Yew, Kyoung Han ;
Lee, Kyu Youl ;
Sung, Minseok ;
Kim, Ho ;
Kim, Sung-Soo .
JOURNAL OF POWER SOURCES, 2006, 161 (02) :1254-1259
[8]  
CHRISTENSEN L, 2009, 216 M EL SOC VIENN
[9]   RETRACTED: Theoretical Limits of Energy Density in Silicon-Carbon Composite Anode Based Lithium Ion Batteries (Retracted Article) [J].
Dash, Ranjan ;
Pannala, Sreekanth .
SCIENTIFIC REPORTS, 2016, 6
[10]   Electrochemistry of CuxSi1-x Alloys in Li Cells [J].
Du, Zhijia ;
Liu, Hui ;
Ellis, S. N. ;
Dunlap, R. A. ;
Zhu, M. ;
Obrovac, M. N. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2016, 163 (07) :A1275-A1279