共 50 条
GROUPS WITH FEW CONJUGACY CLASSES
被引:7
|作者:
Hethelyi, Laszlo
[1
]
Horvath, Erzsebet
[1
]
Keller, Thomas Michael
[2
]
Maroti, Attila
[3
]
机构:
[1] Budapest Univ Technol & Econ, Inst Math, Dept Algebra, H-1521 Budapest, Hungary
[2] Texas State Univ, Dept Math, San Marcos, TX 78666 USA
[3] MTA Alfred Renyi Inst Math, H-1053 Budapest, Hungary
关键词:
finite group;
conjugacy classes;
lower bound;
Frobenius group;
FINITE-GROUPS;
NUMBER;
CLASSIFICATION;
D O I:
10.1017/S001309150900176X
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
Let G be a finite group, let p be a prime divisor of the order of G and let k(G) be the number of conjugacy classes of G. By disregarding at most finitely many non-solvable p-solvable groups G, we have k(G) >= 2 root p - 1 with equality if and only if root p - 1 is an integer, G = C(p) x C root p - 1 and C(G)(C(p)) = C(p). This extends earlier work of Hethelyi, Kulshammer, Malle and Keller.
引用
收藏
页码:423 / 430
页数:8
相关论文