GROUPS WITH FEW CONJUGACY CLASSES

被引:7
|
作者
Hethelyi, Laszlo [1 ]
Horvath, Erzsebet [1 ]
Keller, Thomas Michael [2 ]
Maroti, Attila [3 ]
机构
[1] Budapest Univ Technol & Econ, Inst Math, Dept Algebra, H-1521 Budapest, Hungary
[2] Texas State Univ, Dept Math, San Marcos, TX 78666 USA
[3] MTA Alfred Renyi Inst Math, H-1053 Budapest, Hungary
关键词
finite group; conjugacy classes; lower bound; Frobenius group; FINITE-GROUPS; NUMBER; CLASSIFICATION;
D O I
10.1017/S001309150900176X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a finite group, let p be a prime divisor of the order of G and let k(G) be the number of conjugacy classes of G. By disregarding at most finitely many non-solvable p-solvable groups G, we have k(G) >= 2 root p - 1 with equality if and only if root p - 1 is an integer, G = C(p) x C root p - 1 and C(G)(C(p)) = C(p). This extends earlier work of Hethelyi, Kulshammer, Malle and Keller.
引用
收藏
页码:423 / 430
页数:8
相关论文
共 50 条