Covering Spaces in Homotopy Type Theory

被引:0
|
作者
Hou, Kuen-Bang [1 ]
机构
[1] Carnegie Mellon Univ, Dept Comp Sci, Pittsburgh, PA 15213 USA
来源
Extended Abstracts Fall 2013: Geometrical Analysis; Type Theory, Homotopy Theory and Univalent Foundations | 2015年
关键词
D O I
10.1007/978-3-319-21284-5_15
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Covering spaces play an important role in classical homotopy theory, whose algebraic characteristics have deep connections with fundamental groups of underlying spaces. It is natural to ask whether these connections can be stated in homotopy type theory (HoTT), an exciting new framework coming with an interpretation in homotopy theory. This note summarizes the author's attempt to recover the classical results (e.g., the classification theorem) so as to explore the expressiveness of the new foundation. Some interesting techniques employed in the current proofs seem applicable to other constructions as well.
引用
收藏
页码:77 / 82
页数:6
相关论文
共 50 条
  • [21] On the homotopy type of Poincaré spaces
    Cavicchioli A.
    Spaggiari F.
    Annali di Matematica Pura ed Applicata (1923 -), 2001, 180 (3): : 331 - 358
  • [22] On the homotopy invariance of L2 torsion for covering spaces
    Mathai, V
    Rothenberg, M
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1998, 126 (03) : 887 - 897
  • [23] Homotopy Type Theory
    Awodey, Steve
    LOGIC AND ITS APPLICATIONS, ICLA 2015, 2015, 8923 : 1 - 10
  • [24] A (Discrete) Homotopy Theory for Geometric Spaces
    Pourhaghani, Asieh
    Torabi, Hamid
    JOURNAL OF MATHEMATICS, 2023, 2023
  • [25] HOMOTOPY THEORY OF PRO-SPACES
    GROSSMAN, JW
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 201 (JAN) : 161 - 176
  • [26] The Homotopy Theory of Function Spaces: A Survey
    Smith, Samuel Bruce
    HOMOTOPY THEORY OF FUNCTION SPACES AND RELATED TOPICS, 2010, 519 : 3 - 39
  • [27] COVERING HOMOTOPY
    HUEBSCH, W
    DUKE MATHEMATICAL JOURNAL, 1956, 23 (02) : 281 - 291
  • [28] HOMOTOPY TYPE OF STEIN-SPACES
    HAMM, HA
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1983, 338 : 121 - 135
  • [29] ON THE RATIONAL HOMOTOPY TYPE OF INTERSECTION SPACES
    Wrazidlo, Dominik J.
    JOURNAL OF SINGULARITIES, 2020, 20 : 251 - 273
  • [30] On the rational homotopy type of function spaces
    Brown, EH
    Szczarba, RH
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1997, 349 (12) : 4931 - 4951