A Local Discontinuous Galerkin Method for Two-Dimensional Time Fractional Diffusion Equations

被引:5
作者
Yeganeh, Somayeh [1 ]
Mokhtari, Reza [1 ]
Hesthaven, Jan S. [2 ]
机构
[1] Isfahan Univ Technol, Dept Math Sci, Esfahan 8415683111, Iran
[2] Ecole Polytech Fed Lausanne, EPFL SB MATHICES MCSS, CH-1015 Lausanne, Switzerland
关键词
Two-dimensional (2D) time fractional diffusion equation; Local discontinuous Galerkin method (LDG); Numerical stability; Convergence analysis; 65M60; 65M12; FINITE-DIFFERENCE METHOD; NUMERICAL APPROXIMATION; SPECTRAL METHOD; ELEMENT-METHOD; SUBDIFFUSION; SUPERCONVERGENCE; SCHEME;
D O I
10.1007/s42967-020-00065-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For two-dimensional (2D) time fractional diffusion equations, we construct a numerical method based on a local discontinuous Galerkin (LDG) method in space and a finite difference scheme in time. We investigate the numerical stability and convergence of the method for both rectangular and triangular meshes and show that the method is unconditionally stable. Numerical results indicate the effectiveness and accuracy of the method and confirm the analysis.
引用
收藏
页码:689 / 709
页数:21
相关论文
共 45 条
[1]  
Basu TS, 2012, INT J NUMER ANAL MOD, V9, P658
[2]   Least-Squares Spectral Method for the solution of a fractional advection-dispersion equation [J].
Carella, Alfredo Raul ;
Dorao, Carlos Alberto .
JOURNAL OF COMPUTATIONAL PHYSICS, 2013, 232 (01) :33-45
[3]   The local discontinuous Galerkin method for time-dependent convection-diffusion systems [J].
Cockburn, B ;
Shu, CW .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1998, 35 (06) :2440-2463
[4]   Superconvergence of the local discontinuous Galerkin method for elliptic problems on Cartesian grids [J].
Cockburn, B ;
Kanschat, G ;
Perugia, I ;
Schötzau, D .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2001, 39 (01) :264-285
[5]   An analysis of the minimal dissipation local discontinuous Galerkin method for convection-diffusion problems [J].
Cockburn, Bernardo ;
Dong, Bo .
JOURNAL OF SCIENTIFIC COMPUTING, 2007, 32 (02) :233-262
[6]   Compact finite difference method for the fractional diffusion equation [J].
Cui, Mingrong .
JOURNAL OF COMPUTATIONAL PHYSICS, 2009, 228 (20) :7792-7804
[7]   LOCAL DISCONTINUOUS GALERKIN METHODS FOR FRACTIONAL DIFFUSION EQUATIONS [J].
Deng, W. H. ;
Hesthaven, J. S. .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2013, 47 (06) :1845-1864
[8]   Local discontinuous Galerkin methods for fractional ordinary differential equations [J].
Deng, Weihua ;
Hesthaven, Jan S. .
BIT NUMERICAL MATHEMATICS, 2015, 55 (04) :967-985
[9]   Mixed spline function method for reaction-subdiffusion equations [J].
Ding, Hengfei ;
Li, Changpin .
JOURNAL OF COMPUTATIONAL PHYSICS, 2013, 242 :103-123
[10]   ANALYSIS OF A LOCAL DISCONTINUOUS GALERKIN METHOD FOR LINEAR TIME-DEPENDENT FOURTH-ORDER PROBLEMS [J].
Dong, Bo ;
Shu, Chi-Wang .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2009, 47 (05) :3240-3268