Spectral clustering for data categorization based on self-organizing maps

被引:1
|
作者
Saalbach, A [1 ]
Twellmann, T [1 ]
Nattkemper, TW [1 ]
机构
[1] Univ Bielefeld, Appl Neuroinformat Grp, D-33615 Bielefeld, Germany
来源
APPLICATIONS OF NEURAL NETWORKS AND MACHINE LEARNING IN IMAGE PROCESSING IX | 2005年 / 5673卷
关键词
spectral clustering; self-organizing maps; neural gas; hierarchical clustering; adjusted rand index;
D O I
10.1117/12.585857
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The exploration and categorization of large and unannotated image collections is a challenging task in the field of image retrieval as well as in the generation of appearance based object representations. In this context the Self-Organizing Map (SOM) has shown to be an efficient and scalable tool for the analysis of image collections based on low level features. Next to commonly employed visualization methods, clustering techniques have been recently considered for the aggregation of SOM nodes into groups in order to facilitate category specific data exploration. In this paper, spectral clustering based on graph theoretic concepts is employed for SOM based clustering and data categorization. The results are compared with those from the Neural Gas algorithm and hierarchical agglomerative clustering. Using SOMs trained on an eigenspace representation of the Columbia Object Image Library 20 (COIL20), the correspondence of the results to a semantic reference grouping is calculated. Based on the Adjusted Rand Index it is shown that independent from the number of selected clusters, spectral clustering achieves a significantly higher correspondence to the reference grouping than any of the other methods.
引用
收藏
页码:12 / 18
页数:7
相关论文
共 50 条
  • [41] SOMViz: Web-based Self-Organizing Maps
    Sara Irina Fabrikant
    Cedric Gabathuler
    André Skupin
    KN - Journal of Cartography and Geographic Information, 2015, 65 (2) : 81 - 91
  • [42] The Research of Text Mining Based on Self-Organizing Maps
    Ding, Yi
    Fu, Xian
    2012 INTERNATIONAL WORKSHOP ON INFORMATION AND ELECTRONICS ENGINEERING, 2012, 29 : 537 - 541
  • [43] Self-organizing maps for imputation of missing data in incomplete data matrices
    Folguera, Laura
    Zupan, Jure
    Cicerone, Daniel
    Magallanes, Jorge F.
    CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2015, 143 : 146 - 151
  • [44] A fuzzy logic-based representation for web page clustering using self-organizing maps
    Garcia-Plaza, Alberto P.
    Fresno, Victor
    Martinez, Raquel
    PROCESAMIENTO DEL LENGUAJE NATURAL, 2009, (42): : 79 - 86
  • [45] Data fusion using a hierarchy of self-organizing feature maps
    Knopf, GK
    SENSORS AND CONTROLS FOR INTELLIGENT MACHINING, AGILE MANUFACTURING, AND MECHATRONICS, 1998, 3518 : 6 - 16
  • [46] Multi-resolution visualization of data with self-organizing maps
    Prentis, P.
    NEURAL NETWORK WORLD, 2006, 16 (05) : 399 - 410
  • [47] Visual, Linguistic Data Mining Using Self-Organizing Maps
    Wijayasekara, Dumidu
    Manic, Milos
    2012 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2012,
  • [48] Application of Self-Organizing Maps to the Stock Exchange Data Analysis
    Kossakowski, Piotr
    Bilski, Piotr
    2015 IEEE 8TH INTERNATIONAL CONFERENCE ON INTELLIGENT DATA ACQUISITION AND ADVANCED COMPUTING SYSTEMS: TECHNOLOGY AND APPLICATIONS (IDAACS), VOLS 1-2, 2015, : 208 - 213
  • [49] Comparing an Ant-Based Clustering Algorithm with Self-Organizing Maps and K-means
    Boscarioli, Clodis
    Villwock, Rosangela
    Soares, Bruno Eduardo
    INTERNATIONAL JOURNAL OF COMPUTER SCIENCE AND NETWORK SECURITY, 2012, 12 (09): : 49 - 54
  • [50] Quality assessment of data discrimination using self-organizing maps
    Mekler, Alexey
    Schwarz, Dmitri
    JOURNAL OF BIOMEDICAL INFORMATICS, 2014, 51 : 210 - 218