Characterizing battery materials and electrodes via in situ/operando transmission electron microscopy

被引:15
作者
Basak, Shibabrata [1 ,2 ,3 ,4 ]
Dzieciol, Krzysztof [1 ]
Durmus, Yasin Emre [1 ]
Tempel, Hermann [1 ]
Kungl, Hans [1 ]
George, Chandramohan [2 ]
Mayer, Joachim [3 ,4 ,5 ]
Eichel, Ruediger-A. [1 ,6 ]
机构
[1] Forschungszentrum Julich GmbH, Inst Energy & Climate Res, Fundamental Electrochem IEK 9, D-52425 Julich, Germany
[2] Imperial Coll London, Dyson Sch Design Engn, London SW7 2AZ, England
[3] Forschungszentrum Julich Julich GmbH, Ernst Ruska Ctr Microscopy & Spect Electrons, D-52425 Julich, Germany
[4] Forschungszentrum Julich Julich GmbH, Peter Grunberg Inst, D-52425 Julich, Germany
[5] Rhein Westfal TH Aachen, Cent Facil Electron Microscopy GFE, D-52074 Aachen, Germany
[6] Rhein Westfal TH Aachen, Inst Phys Chem, D-52074 Aachen, Germany
来源
CHEMICAL PHYSICS REVIEWS | 2022年 / 3卷 / 03期
关键词
LI-ION BATTERY; X-RAY TOMOGRAPHY; LIQUID-CELL; LITHIUM; EVOLUTION; LITHIATION; ANODE; TEM; NANOBATTERIES; DEGRADATION;
D O I
10.1063/5.0075430
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In situ transmission electron microscopy (TEM) research has enabled better understanding of various battery chemistries (Li-ion, Li-S, metal-O2, Li, and Na metal based, etc.), which fueled substantial developments in battery technologies. In this review, we highlight some of the recent developments shedding new light on battery materials and electrochemistry via TEM. Studying battery electrode processes depending on the type of electrolytes used and the nature of electrode-electrolyte interfaces established upon battery cycling conditions is key to further adoption of battery technologies. To this end, in situ/operando TEM methodologies would require accommodating alongside correlation microscopy tools to predict battery interface evolution, reactivity, and stability, for which the use of x-ray computed tomography and image process via machine learning providing complementary information is highlighted. Such combined approaches have potential to translate TEM-based battery results into more direct macroscopic relevance for the optimization of real-world batteries. (C)2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
引用
收藏
页数:21
相关论文
共 108 条
[1]   Probing the Degradation Mechanisms in Electrolyte Solutions for Li-Ion Batteries by in Situ Transmission Electron Microscopy [J].
Abellan, Patricia ;
Mehdi, B. Layla ;
Parent, Lucas R. ;
Gu, Meng ;
Park, Chiwoo ;
Xu, Wu ;
Zhang, Yaohui ;
Arslan, Ilke ;
Zhang, Ji-Guang ;
Wang, Chong-Min ;
Evans, James E. ;
Browning, Nigel D. .
NANO LETTERS, 2014, 14 (03) :1293-1299
[2]   Correlative Confocal Raman and Scanning Probe Microscopy in the Ionically Active Particles of LiMn2O4 Cathodes [J].
Alikin, Denis ;
Slautin, Boris ;
Abramov, Alexander ;
Rosato, Daniele ;
Shur, Vladimir ;
Tselev, Alexander ;
Kholkin, Andrei .
MATERIALS, 2019, 12 (09)
[3]   Operando transmission electron microscopy of battery cycling: thickness dependent breaking of TiO2 coating on Si/SiO2 nanoparticles [J].
Basak, Shibabrata ;
Tavabi, Amir H. ;
Dzieciol, Krzysztof ;
Migunov, Vadim ;
Arszelewska, Violetta ;
Tempel, Hermann ;
Kungl, Hans ;
Kelder, Erik M. ;
Wagemaker, Marnix ;
George, Chandramohan ;
Mayer, Joachim ;
Dunin-Borkowski, Rafal E. ;
Eichel, Ruediger-A .
CHEMICAL COMMUNICATIONS, 2022, 58 (19) :3130-3133
[4]   Accessing Lithium-Oxygen Battery Discharge Products in Their Native Environments via Transmission Electron Microscopy Grid Electrode [J].
Basak, Shibabrata ;
Baaij, Siemen ;
Ganapathy, Swapna ;
George, Chandramohan ;
Tempel, Hermann ;
Kungl, Hans ;
Kelder, Erik M. ;
Zandbergen, Henny W. ;
Wagemaker, Marnix ;
Eichel, Ruediger-A .
ACS APPLIED ENERGY MATERIALS, 2020, 3 (10) :9509-9515
[5]   Operando Transmission Electron Microscopy Study of All-Solid-State Battery Interface: Redistribution of Lithium among Interconnected Particles [J].
Basak, Shibabrata ;
Migunov, Vadim ;
Tavabi, Amir H. ;
George, Chandramohan ;
Lee, Qing ;
Rosi, Paolo ;
Arszelewska, Violetta ;
Ganapathy, Swapna ;
Vijay, Ashwin ;
Ooms, Frans ;
Schierholz, Roland ;
Tempel, Hermann ;
Kungl, Hans ;
Mayer, Joachim ;
Dunin-Borkowski, Rafal E. ;
Eichel, Ruediger-A ;
Wagemaker, Marnix ;
Kelder, Erik M. .
ACS APPLIED ENERGY MATERIALS, 2020, 3 (06) :5101-5106
[6]   Correlated Materials Characterization via Multimodal Chemical and Functional Imaging [J].
Belianinov, Alex ;
Ievlev, Anton V. ;
Lorenz, Matthias ;
Borodinov, Nikolay ;
Doughty, Benjamin ;
Kalinin, Sergei V. ;
Fernandez, Facundo M. ;
Ovchinnikova, Olga S. .
ACS NANO, 2018, 12 (12) :11798-11818
[7]   Nanoscale Surface Structure-Activity in Electrochemistry and Electrocatalysis [J].
Bentley, Cameron L. ;
Kang, Minkyung ;
Unwin, Patrick R. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2019, 141 (06) :2179-2193
[8]   Innovative zinc-based batteries [J].
Borchers, Niklas ;
Clark, Simon ;
Horstmann, Birger ;
Jayasayee, Kaushik ;
Juel, Mari ;
Stevens, Philippe .
JOURNAL OF POWER SOURCES, 2021, 484
[9]   Toward Safe Lithium Metal Anode in Rechargeable Batteries: A Review [J].
Cheng, Xin-Bing ;
Zhang, Rui ;
Zhao, Chen-Zi ;
Zhang, Qiang .
CHEMICAL REVIEWS, 2017, 117 (15) :10403-10473
[10]   Progress on the Critical Parameters for Lithium-Sulfur Batteries to be Practically Viable [J].
Chung, Sheng-Heng ;
Chang, Chi-Hao ;
Manthiram, Arumugam .
ADVANCED FUNCTIONAL MATERIALS, 2018, 28 (28)