Incomplete integrable Hamiltonian systems with complex polynomial Hamiltonian of small degree

被引:4
作者
Lepskii, T. A. [1 ]
机构
[1] Moscow MV Lomonosov State Univ, Moscow, Russia
基金
俄罗斯基础研究基金会;
关键词
integrable Hamiltonian system; Hamiltonian equivalence of systems; incompleteness of flows of Hamiltonian fields; completed Hamiltonian system; action-angle variables;
D O I
10.1070/SM2010v201n10ABEH004120
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Complex Hamiltonian systems with one degree of freedom on C(2) with the standard symplectic structure omega(C) = dz boolean AND dw and a polynomial Hamiltonian function f = z(2) + P(n)(w), n = 1, 2, 3, 4, are studied. Two Hamiltonian systems (M(i), Re omega(C,i), H(i) - Re f(i)), i - 1, 2, are said to be Hamiltonian equivalent if there exists a complex symplectomorphism M(1) -> M(2) taking the vector field sgrad H(1) to sgrad H(2). Hamiltonian equivalence classes of systems are described in the case n = 1, 2, 3, 4, a completed system is defined for n = 3, 4, and it is proved that it is Liouville integrable as a real Hamiltonian system. By restricting the real action-angle coordinates defined for the completed system in a neighbourhood of any nonsingular leaf, real canonical coordinates are obtained for the original system.
引用
收藏
页码:1511 / 1538
页数:28
相关论文
共 9 条
[1]  
Bolsinov A. V., 1999, INTEGRABLE HAMILTONI, V1
[2]  
Brailov A. V., 1989, Math. USSR-Sb, V62, P373
[3]  
Fomenko A. T., 1986, Soviet Math. Dokl., V33, P502
[4]   THE SYMPLECTIC TOPOLOGY OF COMPLETELY INTEGRABLE HAMILTONIAN-SYSTEMS [J].
FOMENKO, AT .
RUSSIAN MATHEMATICAL SURVEYS, 1989, 44 (01) :181-219
[5]  
FOMENKO AT, 1995, ADV STUD CONT MATH, V5
[6]   Abelian integrals related to Morse polynomials and perturbations of plane Hamiltonian vector fields [J].
Gavrilov, L .
ANNALES DE L INSTITUT FOURIER, 1999, 49 (02) :611-+
[7]  
Matveev S. V., 1989, MATH USSR SB
[8]  
Mishchenko A. S., 1978, Funct. Anal. Appl, V12, P113, DOI [10.1007/BF01076254, DOI 10.1007/BF01076254]
[9]   LIOUVILLE INTEGRABILITY OF HAMILTONIAN-SYSTEMS ON LIE-ALGEBRAS [J].
TROFIMOV, VV ;
FOMENKO, AT .
RUSSIAN MATHEMATICAL SURVEYS, 1984, 39 (02) :1-67