A counter-example to a conjectured characterization of the sphere
被引:26
作者:
Martinez-Maure, Y
论文数: 0引用数: 0
h-index: 0
机构:92500 Rueil-Malmaison, 1, rue Auguste-Perret
Martinez-Maure, Y
机构:
[1] 92500 Rueil-Malmaison, 1, rue Auguste-Perret
来源:
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE
|
2001年
/
332卷
/
01期
关键词:
D O I:
10.1016/S0764-4442(00)01756-0
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
It has long been conjectured that a closed convex surface of class C-+(2) whose principal curvatures K-1, K-2 satisfy the inequality (K-1 - c)(K-2 - c) less than or equal to 0 with some constant c, must be a sphere. Partial results have been obtained by A.D. Aleksandrov, H.F. Munzner and D. Koutroufiotis. We reformulate the conjecture in terms of hedgehogs and we give a counter-example. Besides, we prove the conjecture for surfaces of constant width and give a new proof for analytic surfaces. (C) 2001 Academie des sciences/Editions scientifiques et medicales Elsevier SAS.
引用
收藏
页码:41 / 44
页数:4
相关论文
共 8 条
[1]
Aleksandrov A. D., 1939, DOKL AKAD NAUK SSSR, V22, P99
[2]
Aleksandrov A.D, 1966, VESTNIK LENINGRAD U, V21, P5