Nonparametric regression for interval-valued data based on local linear smoothing approach

被引:10
|
作者
Kong, Lingtao [1 ]
Song, Xiangjun [1 ]
Wang, Xiaomin [1 ]
机构
[1] Shandong Univ Finance & Econ, Sch Stat & Math, Jinan 250014, Peoples R China
基金
中国国家自然科学基金;
关键词
Interval -valued data; Local linear smoothing technique; Kernel function; Bandwidth; MODEL; TESTS;
D O I
10.1016/j.neucom.2022.06.073
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we propose an interval local linear method (ILLM) to fit the regression model with interval -valued explanatory and response variables. The proposed method has no restriction on the form of the regression function. Moreover, it reduces the boundary effect of interval kernel method. Some experi-mental studies including two simulations and four real datasets are examined to evaluate the proposed method. Experimental results show that our method has higher predictive accuracy than some existed methods, including the center and range method, the interval least absolute method, the interval kernel method, multi-output support vector regression and the interval multilayer perceptron.(c) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页码:834 / 843
页数:10
相关论文
共 50 条
  • [41] Constrained center and range joint model for interval-valued symbolic data regression
    Hao, Peng
    Guo, Junpeng
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2017, 116 : 106 - 138
  • [42] Some non-parametric regression models for interval-valued functional data
    Nasirzadeh, Roya
    Nasirzadeh, Fariba
    Mohammadi, Zohreh
    STAT, 2022, 11 (01):
  • [43] Spatial analysis for interval-valued data
    Workman, Austin
    Song, Joon Jin
    JOURNAL OF APPLIED STATISTICS, 2024, 51 (10) : 1946 - 1960
  • [44] Dominance-based fuzzy rough set approach for incomplete interval-valued data
    Dai, Jianhua
    Yan, Yuejun
    Li, Zhaowen
    Liao, Beishui
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2018, 34 (01) : 423 - 436
  • [45] A Bayesian parametrized method for interval-valued regression models
    Xu, Min
    Qin, Zhongfeng
    STATISTICS AND COMPUTING, 2023, 33 (03)
  • [46] Lasso Estimation of an Interval-Valued Multiple Regression Model
    Barzana, Marta Garcia
    Colubi, Ana
    Kontoghiorghes, Erricos John
    STRENGTHENING LINKS BETWEEN DATA ANALYSIS AND SOFT COMPUTING, 2015, 315 : 185 - 191
  • [47] A bivariate Bayesian method for interval-valued regression models
    Xu, Min
    Qin, Zhongfeng
    KNOWLEDGE-BASED SYSTEMS, 2022, 235
  • [48] A Bayesian parametrized method for interval-valued regression models
    Min Xu
    Zhongfeng Qin
    Statistics and Computing, 2023, 33 (3)
  • [49] Interval Dominance-Based Feature Selection for Interval-Valued Ordered Data
    Li, Wentao
    Zhou, Haoxiang
    Xu, Weihua
    Wang, Xi-Zhao
    Pedrycz, Witold
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2023, 34 (10) : 6898 - 6912
  • [50] Bivariate symbolic regression models for interval-valued variables
    Lima Neto, Eufrasio de A.
    Cordeiro, Gauss M.
    de Carvalho, Francisco de A. T.
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2011, 81 (11) : 1727 - 1744