Nonparametric regression for interval-valued data based on local linear smoothing approach

被引:10
|
作者
Kong, Lingtao [1 ]
Song, Xiangjun [1 ]
Wang, Xiaomin [1 ]
机构
[1] Shandong Univ Finance & Econ, Sch Stat & Math, Jinan 250014, Peoples R China
基金
中国国家自然科学基金;
关键词
Interval -valued data; Local linear smoothing technique; Kernel function; Bandwidth; MODEL; TESTS;
D O I
10.1016/j.neucom.2022.06.073
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we propose an interval local linear method (ILLM) to fit the regression model with interval -valued explanatory and response variables. The proposed method has no restriction on the form of the regression function. Moreover, it reduces the boundary effect of interval kernel method. Some experi-mental studies including two simulations and four real datasets are examined to evaluate the proposed method. Experimental results show that our method has higher predictive accuracy than some existed methods, including the center and range method, the interval least absolute method, the interval kernel method, multi-output support vector regression and the interval multilayer perceptron.(c) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页码:834 / 843
页数:10
相关论文
共 50 条
  • [31] Ordinal classification for interval-valued data and interval-valued functional data
    Alcacer, Aleix
    Martinez-Garcia, Marina
    Epifanio, Irene
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 238
  • [32] Interval-valued linear regression model with an asymmetric Laplace distribution
    Guan, Li
    Li, Mengxiao
    JOURNAL OF THE KOREAN STATISTICAL SOCIETY, 2025, 54 (01) : 161 - 193
  • [33] Statistical interval-valued fuzzy systems via linear regression
    Qiu, Y
    Zhang, YQ
    Zhao, Y
    2005 IEEE International Conference on Granular Computing, Vols 1 and 2, 2005, : 229 - 232
  • [34] Constrained linear regression models for symbolic interval-valued variablesk
    Lima Neto, Eufrasio de A.
    de Carvalho, Francisco de A. T.
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2010, 54 (02) : 333 - 347
  • [35] Nonparametric estimation and forecasting of interval-valued time series regression models with constraints
    Sun, Yuying
    Huang, Bai
    Ullah, Aman
    Wang, Shouyang
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 249
  • [36] Distance-based linear discriminant analysis for interval-valued data
    Ramos-Guajardo, Ana B.
    Grzegorzewski, Przemyslaw
    INFORMATION SCIENCES, 2016, 372 : 591 - 607
  • [37] Testing linear independence in linear models with interval-valued data
    Angeles Gil, Maria
    Gonzalez-Rodriguez, Gil
    Colubi, Ana
    Montenegro, Manuel
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2007, 51 (06) : 3002 - 3015
  • [38] Computing Simple Bounds for Regression Estimates for Linear Regression with Interval-valued Covariates
    Schollmeyer, Georg
    PROCEEDINGS OF THE TWELVETH INTERNATIONAL SYMPOSIUM ON IMPRECISE PROBABILITY: THEORIES AND APPLICATIONS, 2021, 147 : 273 - 279
  • [39] A Pattern Classifier for Interval-valued Data Based on Multinomial Logistic Regression Model
    de Barros, Alberto Pereira
    Tenorio de Carvalho, Francisco de Assis
    Lima Neto, Eufrasio de Andrade
    PROCEEDINGS 2012 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC), 2012, : 541 - 546
  • [40] Robust regression for interval-valued data based on midpoints and log-ranges
    Qing Zhao
    Huiwen Wang
    Shanshan Wang
    Advances in Data Analysis and Classification, 2023, 17 : 583 - 621